Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry - Archive ouverte HAL Access content directly
Journal Articles Journal of Chromatography A Year : 2016

Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry

(1) , (1) , (1) , (1) , (1) , (1) , (1)
1

Abstract

Here, we developed and validated a headspace-solid-phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS) method for the determination of 14 volatile perfluorinated alkylated substances (PFASs) in water and sediment samples according to SANTE 11945/2015 guidelines. Three fluorotelomer alcohols (FTOHs), two perfluoroalkyl iodides (PFIs), three fluorotelomer iodides (FTIs), four fluorotelomer acrylates and methacrylates (FTACs and FTMACs) and two perfluoroalkyl sulfonamides (FASAs) were analysed simultaneously to assess the occurrence of these compounds from their emission sources to the outlets in water treatment plants. Several SPME parameters were optimised for both water and sediment to maximise responses and keep analysis time to a minimum. In tap water, the limits of quantification (LOQs) were found to be between 20ng/L and 100ng/L depending on the analyte, with mean recoveries ranging from 76 to 126%. For sediments, LOQs ranged from 1 to 3ng/g dry weight depending on the target compound, with mean recoveries ranging from 74 to 125%. SPME considerably reduced sample preparation time and its use provided a sensitive, fast and simple technique. We then used this HS-SPME-GC/MS method to investigate the presence of volatile PFASs in the vicinity of an industrial facility. Only 8:2 FTOH and 10:2 FTOH were detected in a few water and sediment samples at sub-ppb concentration levels. Moreover, several non-target fluorotelomers (12:2 FTOH, 14:2 FTOH and 10:2 FTI) were identified in raw effluent samples. These long-chain fluorotelomers have high bioaccumulative potential in the aquatic environment compared with short-chain fluorotelomers such as 6:2 FTOH and 6:2 FTI.
Not file

Dates and versions

anses-03440307 , version 1 (22-11-2021)

Identifiers

Cite

Cristina Bach, Virginie Boiteux, Jessica Hémard, Adeline Colin, Christophe Rosin, et al.. Simultaneous determination of perfluoroalkyl iodides, perfluoroalkane sulfonamides, fluorotelomer alcohols, fluorotelomer iodides and fluorotelomer acrylates and methacrylates in water and sediments using solid-phase microextraction-gas chromatography/mass spectrometry. Journal of Chromatography A, 2016, 1448, pp.98-106. ⟨10.1016/j.chroma.2016.04.025⟩. ⟨anses-03440307⟩

Collections

ANSES
13 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More