Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species.
Eric Vautier, G. Abadie, A. Pont, Régis Thiery

To cite this version:

HAL Id: hal-00409215
https://hal-anses.archives-ouvertes.fr/hal-00409215
Submitted on 16 Nov 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species

E. VAUTOR*, G ABADIE, A. PONT, R THIERY

AFSSA (French Food Safety Agency), Small Ruminants Pathology Unit, BP111, 06902 Sophia-Antipolis Cedex, France

* Corresponding author. Tel (33) 4 9294 3711; Fax (33) 4 9294 3701.
E-mail address: e.vautore@sophia.afssa.fr
Abstract: The implication of biofilm in chronic bacterial infection in many species has triggered an increasing interest in the characterization of genes involved in biofilm formation. The \textit{bap} gene is a newly identified gene that encodes the biofilm-associated protein, BAP, which is involved in biofilm formation in \textit{Staphylococcus aureus}. So far the \textit{bap} gene has only been found in a small proportion of \textit{S. aureus} strains from bovine mastitis in Spain. In order to study the presence of the \textit{bap} gene in \textit{S. aureus} isolates obtained from other species and various locations, a collection of 262 isolates was tested by PCR, using published primers and dot-blot. The results indicated that none isolates carried the \textit{bap} gene suggesting that the prevalence of this gene among \textit{S. aureus} isolates should be very low.

Keywords: \textit{Staphylococcus aureus}; \textit{Bap} gene; Biofilm; Epidemiology

1. Introduction

In \textit{Staphylococcus aureus} (\textit{S. aureus}) the implication of biofilm in chronic infections in all animal species have triggered an increasing interest in the characterization of genes
involved in this biofilm formation. For example, the biofilm formation is important for virulence in mastitis (Baselga et al., 1993). A new gene (6,831 nucleotides) involved in biofilm formation (bap coding for a biofilm-associated protein, Bap) was identified in a small proportion of S. aureus from bovine mastitis (Cucarella et al., 2001). The bap protein is a member of proteins playing a role in biofilm formation in many bacteria. They share common structural features as they have a high molecular weight and contain a core domain of tandem repeats. These proteins confer upon bacteria the capacity to form a biofilm and play a relevant role in bacterial infectious process. Some of these proteins are contained occasionally in mobile elements (Lasas and Penades, 2006). In S. aureus, the bap gene is carried by a putative composite transposon inserted in SaPlbov2, a mobile staphylococcal pathogenicity island. Bap orthologue genes have been found in other staphylococcal species including Staphylococcus epidermidis, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus simulans and Staphylococcus hyicus. However, sequence analyses of the flanking regions revealed that these orthologue bap genes of these staphylococcal species were not contained in the SaPlbov2 pathogenicity island (Tormo et al., 2005).

The aim of the present study was to investigate the presence of bap gene in various S. aureus isolates recovered from human and different animal species. To do this a published PCR method was used (Cucarella et al., 2001) and results were confirmed by dot blot analysis.

2. Materials and methods

2.1. S. aureus isolates used in the study

Two hundred and sixty two S. aureus isolates associated with different diseases were recovered from various locations in France and different animal species (cows, sheep, goats, pigs, rabbits, poultry, horses, human) (table 1). The cow’s isolates were a gift from Dr J.L Martel (AFSSA Lyon). Some sheep isolates were from ML De Buyser (AFSSA Maisons-Alfort). The goat’s isolates were partly from Dr P. Mercier (AFSSA Niort). The pig, poultry and
rabbits isolates were from M.H. Bäyon-Auboyer (Departemental Laboratory Côtes d’Armor).
The horse’s isolates were a gift from Dr C. Collobert (AFSSA Dozulé). The human isolates
were mainly from Dr H. Carsenti-Dellamonica (Hospital of Archet, Nice, France). All the
remaining isolates were from AFSSA Sophia-Antipolis.

2.2. Detection of the \textit{bap} gene by PCR

DNA extraction was performed using the DNeasy® Tissue Kit (Qiagen, Courtaboeuf,
France) according the manufacturer’s instructions with slight modifications. Lysostaphin
(Sigma, St Quentin, France) were added (1mg/ml) for enzymatic lysis at 37°C for 2 h.
PCR were performed twice, using a primer pair (sasp-6m : 5’
CCCTATATCGAAGGTGTAGAATTGCAC 3’ and sasp-7c : 5’
GCTGTGAAGTTAATCTGTACCTGC 3’) as described by Cucarella (Cucarella et al.,
2004) to detect the \textit{bap} gene. Amplification was carried out on a Mastercycler™ (Eppendorf,
Hamburg, Germany) with Platinium® Taq DNA Polymerase (Invitrogen, Cergy Pontoise,
France) under the following conditions: an initial 2 minutes denaturation step at 94°C;
followed by 40 cycles each of 30 seconds at 94°C, 30 seconds at 55°C, and 75 seconds at
72°C; and a final step at 72°C for 5 minutes. A 971-bp PCR fragment was expected.

The primer pair (staur4 : 5’ ACGGAGTTACAAAGGACGAC 3’ and staur6 : 5’
AGCTCAGCCTAAGGAGTAC 3’) was used to target the 23S rDNA as described by Straub
(Straub et al., 1999) to confirm the quality of each DNA extract and the absence of PCR
inhibitor. The following conditions were used: an initial 5 minutes step at 94°C; followed by 30
cycles each consisting of 30 seconds at 94°C, 30 seconds at 58°C, and 75 seconds at 72°C;
and a final step at 72°C for 5 minutes. A 1250-bp PCR fragment was expected.

A \textit{bap} positive control strain V329 (Genbank accession no. AY220730, kindly
provided by Dr J.R. Penadés, Spain) was used with each PCR run. Amplification products
were electrophoreosed in a 1% agarose gel containing ethidium bromide and visualized by
transilluminantion under UV light.
2.3. Dot blotting and hybridisation for the \textit{bap} gene

For the dot blotting, 141 isolates were randomly chosen among the two hundred and sixty two isolates.

The dot blotting technique was described by Planchon et al. (Planchon et al., 2006). Briefly, 50 ng of denatured DNA were spotted onto N + nylon membrane and treated according to the manufacturer's instructions (Amersham Biosciences, Buckinghamshire, England). The PCR product amplified with the primers sasp-6m and sasp-7c (Cucarella et al., 2004), specific for the \textit{bap} gene (971 bp long) from the V329 \textit{S. aureus} strain, was used as the probe. This PCR product was purified with a QIAquick® PCR purification kit (Qiagen, Courtaboeuf, France), labelled with the DIG-High Prime® system (Roche, Neuilly sur Seine, France). The hybridisations were done in DIG Easy Hyb® solution and the hybridised probe was detected by the Dig colour detection® kit (Roche, Neuilly sur Seine, France) following the manufacturer's instructions. \textit{S. aureus} V329 (Genbank accession no. AY220730) was used as positive control and the strain Mu50 (Genbank accession no. BA000017) as negative control.

3. Results

DNA extracted from 262 \textit{S. aureus} isolates was tested for the presence the \textit{bap} gene by PCR, using the primer pair sasp-6m and sasp-7c, as indicated in the materials and methods section. Although the positive control strain (V329) showed a band at 971 bp, as expected, none of the tested isolates showed positive results. All isolates were also tested for the presence of the \textit{S. aureus} 23S DNA by using PCR to check for DNA quality, presence of inhibitors of the PCR reactions and specificity. All isolates were found positive, thus eliminating false negative results. An example of some PCR results is shown in figure 1.

Since it cannot be excluded that mutations or deletions could have occurred in the primer pair region of the \textit{bap} gene, 141 isolates were randomly selected and tested by dot
blotting. As illustrated in figure 2, all isolates were also found negative by using this
technique, except the bap positive control strain V329. Therefore it is likely that the bap gene
is lacking in all isolates of S. aureus tested in this study.

4. Discussion

The gene for the biofilm associated protein (bap gene) was not detected in the twenty
hundred and sixty two S. aureus isolates of this study. These results are in agreement with
previous surveys on S. aureus of human, bovine, rabbit and pig origins (Arciola et al., 2001;
Vasudevan et al., 2003; Vancraeynest et al., 2004; Nitzsche et al., 2007) where the bap gene
was not found in the S. aureus isolates recovered in these animal species of these studies.
Our study is the first one with a wide range of S. aureus recovered from different animal
species to show that the bap gene had not spread yet among S. aureus.

So far, the bap gene has only been found in S. aureus obtained from bovine
subclinical mastitis in Spain (Cucarella et al., 2001). This gene is also present in other
Staphylococcus species, including S. epidermidis, S. chromogenes, S. xylosus, S. simulans
and S. hyicus (Tormo et al., 2005; Planchon et al., 2006). But, the bap gene is not widely
distributed in S. aureus isolates despite its presence in the pathogenicity island SaPlbov2, a
mobile genetic element. Analysis of the bap flanking sequences revealed that bap is carried
by a transposon-like element. The transposon is inserted in the pathogenic island SaPlbov2
which is mobile without the presence of a helper phage (Penadés, 2006). The ability to
produce biofilms, associated with the presence of the bap gene has been shown to give
growth and persistence advantage to isolates from bovine chronic mastitis (Cucarella et al.,
2004). But, S. aureus is fully capable of forming biofilm in the absence of bap gene as shown
for some isolates (Vautor et al., 2006). These isolates were associated with the well-known
operon icaADBC (manuscript in preparation). As producing biofilm is an advantage for
virulence, it was the purpose of this study to look for the bap gene in S. aureus pathogenic
isolates. We propose two hypothesis, to be confirmed, explaining why the bap gene had not
spread amongst others *S. aureus* strains: i) the *bap* gene must have been acquired recently by *S. aureus* in SaPIbov2 and consequently the gene has not been horizontally transferred yet ii) horizontal gene transfer is not easy between different *S. aureus* lineages due to their host specificities. The *S. aureus* lineages are supposed to be different between strains recovered from different animal species. The Sau1 type restriction-modification system found in *S. aureus* is one of specifics mechanism that controls the ability of mobile genetic element to spread between strains (Waldron and Lindsay, 2006).

In conclusion, this study indicated that none isolates carried the *bap* gene suggesting that the prevalence of this gene among *S. aureus* isolates should be very low. Finally, no evidence of horizontal transfer of the *bap* gene between *S. aureus* recovered from different animal species was found.

Acknowledgements

We thank Dr José Penades (Cardenal Herrera-CEU University and Instituto Valenciano de Investigaciones Agrarias, 46113 Moncada, Valencia, Spain) for helpful discussion.

References

