C. M. , B. H. , M. N. , and D. Beaufort-a, Appréciation des risques microbiologiques : présentation générale et applications, 2003.

D. Js, S. Gr, and J. Wray-jr, Predicting the growth of Salmonella typhimurium on beef by using the temperature function integration technique, Appl. Environ. Microbiol, vol.58, pp.3482-3487, 1992.

H. S. , L. Querrec-f, B. P. , G. A. , and E. E. Vaillant-v, Les toxi-infections alimentaires collectives en France en, Bull. Epid. Hebdo, vol.50, pp.249-253, 2001.

O. Tp, Development and validation of a tertiary simulation model for predicting the potential growth of Salmonella typhimurium on cooked chicken, Int. Jour. Food Microbiol, vol.76, pp.177-190, 2002.

R. Da, L. Rk, T. Mcmeekin, S. An, and C. Re, Model for bacterial culture growth rate throughout the entire biokinetic temperature range, J. Bacteriol, vol.154, pp.1222-1226, 1983.

R. L. , L. Jr, and F. Jp, An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model, J. Theor. Biol, vol.162, pp.447-463, 1993.

R. L. , L. Jr, B. S. , and F. Jp, Convenient model to describe the combined effects of temperature and pH on microbial growth, Appl. Environ. Microbiol, vol.61, pp.610-616, 1995.

Z. Mh, W. J. De, and N. S. , Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption, Int. J. Food Microbiol, vol.30, pp.55-70, 1996.