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A B S T R A C T   

Chemical pollution impinges on the quality of water systems and the ecosystem services (ESs) they provide. 
Expression of ESs in monetary units has become an essential tool for sustainable ecosystem management. 
However, the impact of chemical pollution on ESs is rarely quantified, and ES valuation often focuses on indi
vidual services without considering the total services provided by the ecosystem. The purpose of the study was to 
develop a stepwise approach to quantify the impact of sediment pollution on the total ES value provided by water 
systems. Thereby, we calculated the total ES value loss as a function of the multi-substance potentially affected 
fraction of species at the HC50 level (msPAF(HC50)). The function is a combination of relationships between, 
subsequently: the msPAF(HC50), diversity, productivity and total ES value. Regardless of the inherent differences 
between terrestrial and aquatic ecosystems, an increase of diversity generally corresponded to an increase in 
productivity with curvilinear or linear effects. A positive correlation between productivity and total values of ESs 
of biomes was observed. The combined relationships showed that 1% msPAF(HC50) corresponded to on average 
0.5% (0.05–1.40%) of total ES value loss. The ES loss due to polluted sediments in the Waal-Meuse river estuary 
(the Netherlands) and Flemish waterways (Belgium) was estimated to be 0.3–5 and 0.6–10 thousand 2007$/ha/ 
yr, respectively. Our study presents a novel methodology to assess the impact of chemical exposure on diversity, 
productivity, and total value that ecosystems provide. With sufficient monitoring data, our generic methodology 
can be applied for any chemical and region of interest and help water managers make informed decisions on cost- 
effective measures to remedy pollution. Acknowledging that the ES loss estimates as a function of PAF(HC50) are 
crude, we explicitly discuss the uncertainties in each step for further development and application of the 
methodology.   

1. Introduction 

Human activities are considered to be the driving force of chemical 
pollution (Posthuma et al., 2020). Emissions from anthropogenic ac
tivities are directly or indirectly discharged into natural water bodies, 
leading to contamination of river basins with agricultural, industrial and 
household chemicals (e.g. heavy metals and organic pollutants) (Goel, 
2006). Hazardous substances pose threats to wildlife, ecosystem stabil
ity and function as well as human health (Gerbersdorf et al., 2011; 
Backhaus et al., 2012; Posthuma et al., 2020). Therefore, various 

monitoring and modelling tools have been developed to assess the 
pollution of surface water (Hendriks, 1994; Collins and Mcgonigle, 
2008; Michaelis, 2012). Prominently, chemical pollutants are ultimately 
deposited and accumulated in sediments (De Castro-Català et al., 2016). 
While surface water quality has improved over the years as required by 
the European Water Framework Directive (WFD) (European Commis
sion, 2000), sullied sediments may become a source of adverse ecolog
ical effects on water systems (De Deckere et al., 2011). However, 
sediments have received less attention due to lower visibility and higher 
complexity. 
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Chemical pollution has been identified as one of the five highest- 
ranked environmental pressures that negatively affect global biodiver
sity (Hirsch, 2010). Ecological effects of chemicals are usually evaluated 
with the potentially affected fraction (PAF) of species, a toxic pressure 
metric derived from species sensitivity distributions (SSDs) (De Zwart 
and Posthuma, 2005; Del Signore et al., 2016). The PAF represents the 
estimated fraction of species affected at a given exposure to chemicals in 
the environment (Posthuma et al., 2001). As a standard indicator in risk 
assessment, the ecological relevance of the PAF has been demonstrated 
by comparisons with community indicators such as species diversity (De 
Vries et al., 2010), (mean) species abundance (Posthuma and De Zwart, 
2012; Hoeks et al., 2020) and ecological status under the WFD (Post
huma et al., 2020). Recently, Posthuma et al. (2019b) have substantially 
expanded the RIVM e-toxbase, allowing to employ SSDs for 12,836 
chemicals, while distinguishing SSDs for protection targets (SSD-NOEC) 
and biodiversity impact levels (SSD-HC50), respectively. Consequently, 
the number of substances covered by SSDs has increased, and estima
tions of the relative and cumulative impacts of present pollutants on 
population levels have improved. 

In addition to standard indicators for water and sediment quality (e. 
g. PAF), the ecosystem service (ES) concept has gained more ground in 
research, policy and applications since the release of the Millennium 
Ecosystem Assessment (MEA; Millennium Ecosystem Assessment 
(2005)) (Daily et al., 2009; Maes et al., 2016; Pascual et al., 2017). ESs 
are defined by the MEA as ‘the benefits that people can obtain from 
ecosystems’, and they are further classified by CICES (Common Inter
national Classification of Ecosystem Services) into three categories: 
Provisioning Services, Regulating and Maintenance Services, and Cultural 
Services (Haines-Young and Potschin, 2018). As a connecting medium 
between ecosystems via the water cycle, sediments provide a variety of 
valuable ESs within aquatic systems (e.g. habitat provision, nutrient 
recycling and flood protection) (Apitz, 2012), while contaminated sed
iments have the potential to pose ecological risks. Therefore, strategies 
for evaluating chemical risks in waterways should consider effects on 
ESs regarding the sustainability of ecological, socio-cultural and eco
nomic objectives (Backhaus et al., 2012). 

Despite debate and controversy on economic valuation methods and 
accuracy (e.g. Gómez-Baggethun and Ruiz-Pérez (2011); Laurans et al. 
(2013); Martín-López et al. (2014)), the expression of ESs in financial 
terms has become an essential tool for a more comprehensive assessment 
regarding trade-offs between ecological benefits and land use options 
(De Groot et al., 2012; Costanza et al., 2017). However, most ES valu
ation applied a book-keeping and pragmatic approach based on appli
cability to each specific ES and data availability (Brouwer et al., 2013; 
Bartkowski, 2017), which is unfeasible for countless pressures and 
ecosystems. Consequently, quantification is restricted to a small number 
of ESs, calculated for a few regions only. Besides, ES assessments for 
water systems focus on a limited number of pressures (e.g. eutrophica
tion, embankments, shipping, climate change and flood defence mea
sures) (Brouwer et al., 2007, 2008; Gilvear et al., 2013; Grizzetti et al., 
2016; Koopman et al., 2018). In the Netherlands, assessments of 
chemical emission reduction only considered increasing economic costs 
in specific sectors (e.g. agriculture, commercial shipping), with 
ES-related cost savings focusing solely on wastewater treatment 
(Brouwer et al., 2008). 

While PAF is a central endpoint in chemical risk assessment, its 
relationship with total ES value has not yet been explored. Instead of 
pragmatically achieving reasonable estimates of specific ESs, we here 
explore opportunities for an overarching approach. We hypothesise that 
the PAF-ES methodological framework would aid valuing the impacts of 
chemical contamination on ecological benefits. The outcomes of the 
PAF-ES methodology could ultimately allow water managers to make 
informed decisions on handling water and sediment pollution by 
comparing project alternatives (e.g. ecological benefits against remedi
ation costs of contaminated waterways). 

Hence, our study aimed to develop and apply a systematic outline to 

quantify the economic impacts of chemical pollution on ESs provided by 
water systems. To this end, we estimated the total ES loss in monetary 
units as a function of a chemical pollution indicator (i.e. PAF) by sub
sequently extrapolating PAF to diversity, productivity and total ES 
value. We applied the derived relationship between PAF and total ES 
value loss to polluted sediments of waterways in Waal-Meuse river es
tuary (the Netherlands) and Flanders (Belgium), as monitoring con
centration data in sediments were sufficient. We discussed the 
uncertainties for further development and application of the 
methodology. 

2. Materials and methods 

To assess the impacts of sediment pollution of waterways on ESs, we 
developed a stepwise approach consisting of five steps from (1) to (5) 
(Fig. 1). Sediment concentrations were first converted into water levels, 
a common procedure for comparing toxicity data (Section 2.1). The 
multi-substance PAF of the whole aquatic community (ranging from 
algae to fish) at the HC50 level was subsequently calculated (msPAF 
(HC50), Section 2.2). The msPAF(HC50) was linked to diversity based 
on previous studies (Section 2.3). The association between diversity and 
total ES value was based on literature review and data analysis, using 
productivity as a proxy for ESs (Section 2.4 and 2.5). The quantitative 
relationships between msPAF(HC50) and total ES loss were finally 
applied to the Waal-Meuse river estuary and Flemish waterways to gain 
insights into impact magnitudes (Section 2.6). 

2.1. Conversion from sediment concentrations into water concentrations 

Historically, direct measurement of concentrations in sediment pore 
water was extremely challenging due to low detection limits, sampling 
artefacts and chemical interferences (ASTM, 1994; Nolan et al., 2003). 
Compared with the direct analysis in sediment pore water, total sedi
ment concentrations were easier to measure. Therefore, sediment pore 
water (hereafter water) concentrations were predicted from measured 
whole sediment concentrations based on equilibrium partitioning re
lationships in this study. 

2.1.1. Sediment concentrations 
The Waal-Meuse river estuary. From 1992 to 1999, sediment pollution 

was monitored in the Waal-Meuse river estuary. Seven regions were 
included for field sampling (i.e. Haringvliet (1995), Hollandsch Diep 
(1993), Nieuwe Merwede (1992), Dordtsche Biesbosch (1993), Bra
bantsche Biesbosch (1994), Amer (1998), Sliedrechtse Biesbosch 
(1999)). Sampling methods were described for each location in Postma 
and Den Besten (2001), and the chemical analyses were performed as 
described by Den Besten et al. (1995). Concentrations of 46 chemicals 
were measured in the top-layer (10 cm) of the sediment (Table A1 in 
Appendix A). 

Flemish waterways. The available sediment monitoring data from 
2000 to 2015 were derived from the TRIAD assessment programme of 
the Flemish Environment Agency (www.vmm.be). Locations throughout 
Flanders were sampled (40 L sediment) approximately every four years 
in spring using a Van Veen grab sampler (De Deckere et al., 2000). In 
total, 42 chemicals were analysed (Table A2 in Appendix A). 

2.1.2. Conversion from sediment to water concentrations 
Due to a lack of information on in-situ burrowing behaviour of 

aquatic species, all species were assumed to be exposed to chemicals in 
water. As sampling data did not entail information on speciation forms 
of chemicals, total sediment concentrations ([C]sed, mg/kg) were con
verted to total water concentrations ([C]aq, μg/L) via equilibrium par
titioning (Van Der Kooij et al., 1991): 

[C]aq =
r × [C]sed

KSW
(1) 
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where r is an empirical concentration ratio for suspended matter (taken 
as 2 and 1 for organics and metals, respectively (Van Der Kooij et al., 
1991)) and KSW is the solid-water partition coefficient in L/g. 

While KSW values show a great variability depending on physico
chemical factors (Van Der Kooij et al., 1991), only the average binding 
capacity of metals to sediments was taken into account. We obtained 
KSW,metal values for metals from Van Der Kooij et al. (1991) assuming to 
represent the standard 11% and 25% clay (Flanders and Netherlands, 
respectively) and 5% and 10% organic substances (Flanders and 
Netherlands, respectively) (Crommentuijn et al., 1997; De Deckere 
et al., 2000): 

KSW,metal =

∑n
1KSW,metal,n

n
(2)  

where n is the sampling locations in the predefined ecosystems/rivers by 
Van Der Kooij et al. (1991). 

Given the high diversity in hydrophobicity for polycyclic aromatic 
hydrocarbons (PAHs, 103<KOW<107), KSW,organic for organic chemicals 
was calculated via the octanol-water partition coefficients (KOW, 
dimensionless, obtained from Mackay et al. (2006) and Kim et al. 
(2016)) and the fraction of organic substances (fOS, dimensionless): 

KSW,organic = 0.6⋅KOW⋅fOS (3)  

where 0.6 is the empirical conversion factor in L/g (Karickhoff et al., 
1979). 

2.2. The multi-substance potentially affected fraction of aquatic species 

The toxic pressure exerted by chemical mixtures to aquatic com
munities is expressed as multi-substance PAF at the HC50 level (msPAF 
(HC50), %), representing the fraction of field species likely affected (De 
Zwart and Posthuma, 2005). The msPAF(HC50) was calculated based on 
estimated concentrations of pollutants in water (Section 2.1.2) and SSDs 
constructed from the laboratory-based toxicity data. 

Species sensitivity parameters for each chemical included the haz
ardous concentration at which 50% of the species in the SSD is affected 
(HC50, μg/L) for population-level relevant effect criterion (e.g. repro
duction, growth, development) and the respective SSD slope (β, 
dimensionless). Species sensitivity parameters were collected from the 
RIVM e-toxbase (Posthuma et al., 2019b) (Table A3 in Appendix A). The 
toxic pressure was first calculated within each chemical group j (i.e. 
eight individual metals, PAHs, polychlorinated biphenyls (PCBs) and 
persistent organochlorine pesticides (OCPs)), assuming concentration 
additivity as an approximation of mixture impacts (De Zwart and Post
huma, 2005): 

msPAFj =
1

1 + e
− log

(
∑ [C]aq,i

HC50aq,i

)
/

βj

(4)  

where [C]aq,i is the water concentration and HC50aq,i is the hazardous 
concentration for the chemical i within the same chemical group. βj is 
the average SSD slope of the chemical group j. 

The response addition method was then applied to predict the 
mixture toxicity across the groups of chemicals (De Zwart and Post
huma, 2005): 

msPAF(HC50)= 1 −
∏11

j=1

(
1 − msPAFj

)
(5)  

2.3. Relationship between potentially affected fraction and diversity 

Empirical research has shown the ecological relevance of the msPAF 
(HC50) that the value of diversity indicators (e.g. Shannon-Wiener) re
duces when the msPAF(HC50) increases in surface water (De Vries et al., 
2010). In the present study, an increase in the msPAF(HC50) was 
assumed to result in a proportional reduction in benthic diversity (D’, %) 
in various metrics, including species richness, species evenness and 
functional diversity: 

D’ = 100% − msPAF(HC50) (6)  

2.4. Relationship between diversity and productivity 

2.4.1. Rationale 
Productivity is related to many ecosystem services such as food or 

wood provisioning (Millennium Ecosystem Assessment, 2005). Produc
tivity (or aboveground plant biomass in experimental studies) has been 
reported in diversity-ecosystem functioning research at multiple scales 
(Costanza et al., 2007), and it has been correlated with the total ES value 
(Costanza et al., 1998). While using a large number of indicators of ESs 
(e.g. nutrient cycling, organic matter decomposition) might improve 
accuracy, the assessment process would become more intensive in terms 
of data requirements. To explore the full cause-effect chain shown in 
Fig. 1, we used productivity as a proxy for ESs. 

2.4.2. Dataset description 
The dataset used in this paper is a filtered and updated version of the 

datasets published in several meta-analyses (i.e. Cardinale et al. (2006); 
Balvanera et al. (2006); Daam et al. (2019); Duffy et al. (2017)) 
reporting experimental and observational evidence of 
diversity-ecosystem functioning relationships in both terrestrial and 
aquatic realms. Details on literature search and filtering procedures are 
described in Appendix B. Our database included 75 studies, 51 of which 
were conducted in experimental settings (32 in terrestrial and 19 in 
aquatic ecosystems) and 24 in observational settings (17 in terrestrial 
and 7 in aquatic ecosystems) (Tables A4–A6 in Appendix A). 

2.4.3. Data analysis 
Relationships between diversity and productivity were characterised 

by the effect direction (i.e. positive or 0) and function form (e.g. 
Michaelis-Menten, linear functions) (Fig. A1 in Appendix A). To allow 
for comparison and facilitate interpretation of the quantitative diversity- 
productivity relationships, we performed data scaling and curve fitting 
for experimental studies in terrestrial ecosystems. Experimental terres
trial studies were chosen since most diversity-productivity research 
focused on terrestrial systems in the past decades (Loreau et al., 2001; 

Fig. 1. Steps developed to assess the environmental impact of chemical mixtures in sediments on ecosystem services (ESs) of waterways. Step (1): Convert sediment 
concentrations into water concentrations. Step (2): Calculate the multi-substance potentially affected fraction msPAF(HC50) of aquatic species based on water 
concentrations. Step (3): Link msPAF(HC50) to diversity. Step (4): Identify the quantitative diversity-productivity relationship. Step (5): Update the correlation 
between productivity and the total value of ESs. 
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Wardle, 2016; Daam et al., 2019), and quantitative patterns in aquatic 
(freshwater, transitional and marine) and terrestrial ecosystems were 
similar (Fig. A1 in Appendix A and details in Appendix B). Only studies 
that explicitly reported the mathematical function between diversity 
and productivity were included in the data scaling and curve fitting. 

Data scaling. The reported diversity-productivity relationships were 
scaled into a 0–100% range without affecting the shape of curves 
through a linear transformation. The minimum (Pmin) and the maximum 
(Pmax) values of productivity (e.g. aboveground biomass in g/m2) were 
calculated from the minimum (Dmin) and the maximum (Dmax) value of 
diversity measurements (e.g. species richness) according to the reported 
mathematical functions. The values of productivity P and diversity D 
were scaled to P′ and D’ in the range of 0–100% according to: 

P’ = (P − Pmin)/(Pmax − Pmin) × 100% (7.1)  

and 

D’ = (D − Dmin)/(Dmax − Dmin) × 100% (7.2) 

Curve fitting. The average, minimum and maximum impact (the 
upper and lower boundary encompassing all the reported diversity- 
productivity curves) of diversity loss on productivity were identified 
through optical fitting. The decreasing power function (P’ = D’θ, θ < 1), 
Michaelis-Menten and linear functions represented the average, mini
mum and maximum impact, respectively. 

2.5. Relationship between productivity and total ecosystem services 

2.5.1. Rationale 
While productivity has been related to the total ES value (Costanza 

et al., 1998), estimates of productivity and total ES value for each biome 
have changed over the years due to environmental changes (e.g. climate 
change, El Niño events) and improved estimation methods. Therefore, 
an updated quantitative linear correlation between the logarithmically 
transformed value of mean productivity (P, kg/m2/yr) and total ES value 
(V, 2007$/ha/yr) across biomes was provided (Costanza et al., 2007): 

log 10(V)= a + b × log 10(P) (8)  

wherein a and b are empirical fitting constants (Costanza et al., 2007). 

2.5.2. Dataset description 
The fitting constants a and b were determined based on literature 

data. Papers that reported the total ES value for each biome (i.e. the sum 
of the mean value of each ES within the biome) were included (Costanza 
et al. (1997); De Groot et al. (2012); Costanza et al. (2014)) (Fig. A2 in 
Appendix A). A total of 12 biomes and 17 ESs were included (Table A7 in 
Appendix A). To update the quantitative correlation between P and V, 
we chose to use the most recent available data from Costanza et al. 
(2014) and calculated the geometric mean of productivities for each 
biome (Table A8 in Appendix A). 

2.6. Application of derived relationships 

Based on the stepwise approach described above, the relative total ES 
value loss was estimated as a function of msPAF(HC50). To obtain an 
absolute value of ES loss due to chemical mixtures in waterways, we 
considered the sediments in the Waal-Meuse river estuary and Flemish 
waterways as estuarine/freshwater sediments (Den Besten et al., 2003; 
De Deckere et al., 2011). Therefore, the geometric mean of ES value 
provided by lakes/rivers, estuaries, and swamps/floodplains reported in 
Costanza et al. (2014) was applied to represent the sediment ecosystems 
in the present study. 

3. Results 

3.1. Multi-substance potentially affected fraction 

The Waal-Meuse river estuary. The average mixture toxic pressure 
(msPAF(HC50)) for sediment samples in the Waal-Meuse river estuary 
was estimated to be 18.5% (±6.3%) (Table 1). Metals (10.1%) and PAHs 
(8.7%) were the main contributors to the total pressure, while OCPs 
(0.5%) and PCBs (0.2%) had limited contribution. 

Flemish waterways. The msPAF(HC50) for Flemish sediments was 
estimated to be 35.6% (±21.1%) (Table 2). The mixture toxic pressure in 
the Waal-Meuse river estuary (18.5%) was lower than that of the Meuse 
river in Flanders (25.5%), as the relatively clean Waal river diluted the 
Meuse river. It was estimated that the toxic pressure of three rivers in 
Flanders was lower than that of all waterways, indicating that other 
waterways (e.g. canals, streams) were more heavily polluted. The 
chemical groups exerting the highest pressure to the ecosystems were 
those of PAHs, nickel and copper. 

3.2. Relationship between diversity and productivity 

Through curve fitting, the ‘average’, ‘minimum’ and ‘maximum’ 
diversity loss impact on productivity were represented with the power 
(P′ = D′0.35 as approximately 50% and 80% of productivity was still 
maintained at 15% and 50% of pristine species richness, respectively), 
Michaelis-Menten (P′

= 1.04× D′

D′
+0.04) and linear functions (P′ = D′), 

respectively (Fig. 2). In other words, x% of msPAF(HC50) (i.e. (100-x)% 
of remaining diversity) would relate to an average of 
(

1 −
(

1 − x
100

)0.35
)

× 100% (from minimum 4x
104− x% to maximum x%) of 

productivity loss. 

3.3. Relationship between productivity and total ecosystem service value 

An increase of productivity generally led to an increase of total ES 
value of each biome (Fig. 3, note the logarithmic axes for both vari
ables). Regardless of the differences between terrestrial and aquatic 
systems, the fitted relationship between the geometric mean of pro
ductivity (P, kg/m2/yr) and total ES value (V, 2007$/ha/yr) was: 
log10(V) = 4.14 + 1.40log10(P) with R2 = 0.53. In other words, x% of 
productivity loss resulted in (1-(1- x

100)
1.4) × 100% of total ES value loss. 

3.4. Application of derived relationships 

The relationships between msPAF(HC50) and diversity, between 
diversity and productivity in terrestrial ecosystems, and between pro

Table 1 
The msPAF(HC50) (%) for sediments in the Waal-Meuse river estuary.  

Chemical groups msPAF per distributary (%)b msPAF  

HV HD DB NM AM BB SB (%)c 

Metalsa 7.0 9.4 13.2 10.3 10.7 9.8 11.3 10.1 (±1.8) 
PAHs 8.0 8.0 10.4 7.6 9.9 10.0 7.6 8.7 (±1.2) 
OCPs 0.1 1.1 7.1 2.0 0.2 0.1 0.4 0.5 (±2.4) 
PCBs 0.1 0.1 0.5 0.7 0.2 0.1 0.3 0.2 (±0.2) 

msPAF(HC50)(%) 14.6 17.6 28.0 19.4 19.9 19.0 18.6 18.5 (±6.3)  

a Metals include arsenic, cadmium, chromium, copper, mercury, nickel, lead 
and zinc. 

b Distributary code: Haringvliet (HV), Hollandsch Diep (HD), Dordtsche 
Biesbosch (DB), Nieuwe Merwede (NM), Amer (AM), Brabantsche Biesbosch 
(BB), Sliedrechtse Biesbosch (SB). 

c The geometric mean and ±1 standard deviation based on msPAF per 
distributary. 
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ductivity and total ES value were combined. Consequently, an x% of 
msPAF(HC50) implies an average reduction in total ES value (Vloss, %) of 
(Fig. 4): 

Vloss,avg =

(

1 −

(

1 −
msPAF(HC50)

100

)0.49
)

× 100% (9.1)  

with minimum ES loss of 

Vloss,max =

(

1 −

(

1 −
0.04 × msPAF(HC50)
104 − msPAF(HC50)

)1.4
)

× 100% (9.2)  

and maximum ES loss of 

Vloss,avg =

(

1 −

(

1 −
msPAF(HC50)

100

)1.4
)

× 100% (9.3) 

As an outcome of the complete set of assessment steps, 1% of msPAF 
(HC50) was estimated to correspond to on average 0.5% (minimum- 
maximum: 0.05–1.40%) of total ES value loss. Chemical mixtures in 
sediments of Waal-Meuse river estuary and all waterways in Flanders 
would reduce 9.5% (1.20–24.9%) and 19.4% (2.9–46.0%) of total ES 
value, resulting in an ES loss of 0.3–5 and 0.6–10 thousand 2007$/ha/ 
yr, respectively (Table 3). 

4. Discussion 

So far, the economic impacts of chemical pollution on ESs provided 
by the ecosystem have not been quantified. Therefore, we developed a 
novel methodology for assessing the impacts using a stepwise approach, 
based on msPAF(HC50)-diversity-productivity-total ES value relation
ships. The present study is, to our best knowledge, the first to derive and 
apply a holistic outline to estimate changes in total ES value as a func
tion of changes in the chemical pollution indicator (i.e. mixture toxic 
pressure, msPAF(HC50)). The feasibility and potential utility of the 
methodology was illustrated by an application to chemical pollution in 
Dutch and Flemish sediments. The economic outcome may serve as a 
necessary component in the cost-benefit analysis regarding waterway 
quality improvement measures. With sufficient monitoring data, our 
generic relationships can be applied to quantify the economic impacts of 
chemical pollution on water systems for other chemicals and regions of 
interest. Below, we discuss the three main steps of our study, i.e. the 
msPAF-diversity, diversity-productivity, and productivity-total ES value 
relationship, respectively. 

4.1. The msPAF-diversity relationship 

The local mixture toxic pressure (msPAF(HC50) of species) was 
calculated from converted water concentrations and SSDs, combined 
with standard correction of bioavailability and mixture modelling. An 
average msPAF(HC50) of 18.5% in the Waal-Meuse river estuary was 
close to the median of 20% estimated by Posthuma and De Zwart (2012) 
using a smaller toxicity database for the same region in the Netherlands. 

Notably, toxicity is associated with the fraction of the chemical that is 
freely bioavailable (i.e. bioavailability), which was roughly approxi
mated via the average binding capacity of metals. Toxicity may also vary 
substantially depending on the different forms that chemicals exist in 
Vink (2009). This is prominent for metals, whereas only total sediment 
and aqueous concentrations were available. We envision that a pro
portion of variance in the msPAF (Tables 1 and 2) may characterise 
uncertainties due to unknown speciation and bioavailability. 

To date, the ecological relevance of the msPAF is being explored 
mainly for surface water. For instance, the value of the biodiversity in
dicators generally reduces when the msPAF(HC50) increases (De Vries 
et al., 2010). The ecological status of European surface waters was 
demonstrated to increase with a decrease of msPAF(HC50) (Posthuma 
et al., 2020). Such correlations are increasingly underpinned by mech
anistic approaches, relating msPAF(HC50) to mean species abundance 
(MSA) and field occurrences (Hoeks et al., 2020; Thunnissen et al., in 
preparation). For sediments, the fraction of benthic taxa with the 
observed abundance reduction of more than 50% was almost propor
tional with the calculated msPAF(HC50) (Posthuma and De Zwart, 
2012). Based on the evidence, a proportional diversity loss of taxa was 

Table 2 
The msPAF(HC50) (%) and ±1 standard deviation for three rivers and all waterways in Flanders.a  

Chemical groups msPAF (%) 

Meuse river Scheldt river Yser river All waterways in Flanders 

Metalsb 9.2 (±1.7) 10.1 (±3.7) 9.3 (±2.3) 9.4 (±4.3) 
PAHs 17.3 (±2.5) 20.2 (±5.2) 13.6 (±4.0) 23.1 (±10.9) 
PCBs 0.6 (±0.2) 0.6 (±0.4) 0.2 (±0.2) 0.7 (±1.0) 
OCPs 0.2 (±0.1) 5.0 (±9.4) 2.6 (±4.2) 7.0 (±19.2) 

msPAF(HC50) (%) 25.5 (±11.1) 32.2 (±18.6) 23.9 (±12.1) 35.6 (±21.1)  

a All waterways in Flanders included the Meuse, Scheldt, Yser rivers and other waterways in Flanders. 
b Metals include arsenic, cadmium, chromium, copper, mercury, nickel, lead and zinc. 

Fig. 2. Relationships between diversity (D′, %) and productivity (P′, %) in 
experimental terrestrial ecosystems based on reported scaled relationships 
(solid grey curves). The average, minimum and maximum diversity loss impact 
on productivity are shown in solid blue, green and red curves, respectively. 
Minimum impact shows that 96% of diversity loss results in 50% of productivity 
loss (dashed black line). Type of diversity is classified as species richness (open 
circles), functional richness (open triangles) and species evenness (open 
squares). Means and standard errors are shown. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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assumed associated with an increase in msPAF(HC50). However, such 
relationships in sediments are generally weaker than those in surface 
water. Therefore, it is recommended to test the direct relationship be
tween msPAF and macrofauna species diversity for various types of 
sediment under field conditions. 

4.2. Diversity-productivity relationship 

Regardless of the inherent differences between terrestrial and 
aquatic ecosystems (e.g. phylogenetic diversity, ecological processes), 
diversity generally increases with ecosystem productivity, as reported in 
the present study (Fig. 2) and by others (e.g. Stachowicz et al. (2007); 
Cardinale et al. (2012); Tilman et al. (2014); Strong et al. (2015)). In the 
last few decades, the ecological consequences of diversity loss have 
become a central issue in the field of ecological and environmental 
sciences, while experimental work has mainly been carried out in 
grassland ecosystems (Loreau et al., 2001; Giller et al., 2004; Hooper 
et al., 2005; Gustafsson and Boström, 2011). Early studies have explored 
two main classes of underlying mechanisms (while contradictory) for 
how organisms promote productivity (e.g., Loreau et al. (2001); Mulder 
et al. (2001); Cardinale et al. (2007); Tilman et al. (2014); Daam et al. 
(2019)). ‘Complementarity effects’ relate to better performance in 
diverse communities due to niche partitioning and facilitation in shared 
resource use, while ‘sampling effects’ refers to an increased probability 
of including highly productive dominant species in diverse commu
nities. While a summary of diversity-productivity mechanisms allows a 
better understanding of the results presented in this paper, a detailed 
discussion is beyond the scope of this study. 

Our study suggested that a 1% diversity loss corresponds to on 
average 0.35% (0.04–1.00%) productivity loss. The result was consis
tent with the findings from Costanza et al. (2007), reporting that a 1% 
change in vascular plant diversity in warm ecoregions corresponds to a 
0.173% change in productivity based on multiple regression analysis at 
the ecoregion scale in North America. Our study also suggested that 
productivity could increase monotonically with diversity as P’ ~ D’θ (θ 
= 0.35 in the study). The result of θ was consistent with that reported in 
other studies, ranging from 0.1 to 0.5 in algae, grasses, shrubs and trees 
(Liang et al., 2016; Duffy et al., 2017; Chen et al., 2018). 

It should be noted that the present quantitative diversity- 
productivity relationships were derived from evidence in terrestrial 
experiments. While our study showed similar quantitative diversity- 
productivity patterns in aquatic realms (freshwater, transitional and 
marine) and observational studies (Fig. A1 in Appendix A), uncertainties 
remain. For example, compared to terrestrial systems, aquatic systems 
are considered more complex due to multitrophic interactions, faster 
biological processes, greater propagule and material exchange, and 
often steeper physical and chemical gradients (Giller et al., 2004; 
Gamfeldt et al., 2015; Daam et al., 2019). As a result, the direct 
extrapolation of conclusions on diversity effects on productivity from 
terrestrial experiments might be limited. Besides, positive concave-up 
diversity-productivity patterns (i.e. exponential) were reported in two 
large-scale observational studies on deep-sea nematodes and coral reef 
fishes (Danovaro et al., 2008; Mora et al., 2011). The loss of species is 
likely to affect the functioning of natural ecosystems more than would be 
expected from manipulation experiments (Mora et al., 2014). Therefore, 
given the differences between terrestrial and aquatic ecosystems and 

Fig. 3. Relationship between productivity (P, kg/m2/yr) and total ecosystem 
service value (V, 2007$/ha/yr). Bars show the range of productivity and the 
total value of ecosystem services per biome based on Whittaker (1975) and De 
Groot et al. (2012), respectively. The black dashed line is a regression of total 
ecosystem service estimates from Costanza et al. (2014) on the calculated 
geometric mean of productivity based on literature listed in Table A8 
in Appendix A. 

Fig. 4. Relationship between multi-substance potentially affected fraction of 
species (msPAF(HC50), in %) and total ecosystem service (ES) value loss (in %). 
The average, minimum and maximum toxic pressure impacts on total ES value 
loss are shown in solid blue, green and red curves, respectively. Sediment 
sampling sites are shown in different shapes. (For interpretation of the refer
ences to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 3 
Total ecosystem service loss (in 2007$/ha/yr) due to chemical pollution in the Waal-Meuse river estuary and Flemish waterways.  

Site msPAF(HC50) (%)a Productivity loss (%)b Total ES loss (%)b Total ES value (2007$/ha/yr)c Total ES loss (2007$/ha/yr)b 

The Waal-Meuse river estuary 18.5 (±6.3) 6.9 (0.9–18.5) 9.5 (1.2–24.9) 21023 (±7095) 2005 (255–5242) 
Flemish waterways 35.6 (±21.1) 14.3(2.1–35.6) 19.4 (2.9–46.0) 4078 (611–9679)  

a The average mixture toxic pressure (±1 standard deviation). 
b The average value (minimum-maximum). The range only reflects the conversion from diversity to productivity based on the average mixture toxic pressure. 
c The geometric mean (±1 standard deviation) of ecosystem services provided by lakes/rivers, estuaries and swamps/floodplains based on Costanza et al. (2014). 
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differences between experimental and observational studies, further 
study is still needed to improve our understanding of the mechanisms 
behind the diversity-productivity relationships across a range of eco
systems, or diversity-ecosystem functioning relationships in general. 

4.3. Productivity-total ES value relationship 

The differences in total ES value among biomes could be generally 
explained by the differences in productivity, with higher productivity 
resulting in higher ES values (this study and others, e.g. Egoh et al. 
(2008); Thomas et al. (2013)). Therefore, productivity as a proxy for ESs 
could facilitate and simplify quantitative assessments of ESs as pro
ductivity can be measured through remote sensing over space and time 
(Costanza et al., 2017). However, we consider our productivity-ES 
relationship as a necessary but still highly uncertain step in the 
approach (note the logarithmic axes for both variables in Fig. 3). The 
total ES value for each biome on average varied two orders of magnitude 
due to the heterogeneity of original data in terms of valuation methods, 
ES definitions, and socio-economic characteristics in different locations 
and periods (De Groot et al., 2012). Besides, for most biomes, less than 
half of the total number of services (potentially 22 recognised services) 
were valued (De Groot et al., 2012). Consequently, the total ES value 
shown in Fig. 3 is an underestimate of the economic importance of each 
biome/ecosystem. Moreover, the economic impacts of polluted sedi
ments were estimated based on the average ES value provided by 
estuarine or freshwater ecosystems (lakes/rivers, estuaries, and 
swamps/floodplains). As sediments make up the bottom of these eco
systems, we envision that individual case studies (i.e. the original ES 
value) considered the essential ecosystem functions of sediments (e.g. 
habitat provision, flood protection). Nevertheless, in the absence of total 
ES value specifically for sediments, it is recommended to understand the 
broad roles of sediments as essential and dynamic components in eco
systems, and to evaluate the ecological benefits of sediments. 

To date, ES valuation tends to focus on individual estimates of spe
cific ESs value for a particular biome or ecosystem at local or regional 
scales for uses such as urban land use planning and specific policy 
analysis. On one hand, the individual ES estimates for each biome may 
reflect the interdependencies among ESs, biome types and valuation 
methods (Schild et al., 2018). On the other hand, the aggregation of ES 
values for (global) ecosystems or biomes is also necessary, especially in 
the case of raising awareness of nature’s contribution to people (Cos
tanza et al., 2017). The aggregation of ES values is free from data lim
itations (e.g. explicit information on ecological and socio-economic 
contexts), and is feasible to explore overarching principles. Therefore, 
the individual estimates for specific ESs at a local scale and the overall 
aggregated estimates at a larger scale could supplement each other, 
allowing for a more comprehensive understanding and assessment on 
the importance of nature to human well-being. 

Overall, 1% of msPAF(HC50) was estimated to correspond to on 
average 0.5% (0.05–1.40%) of total ES loss. As our study is the first to 
assess chemical pollution impacts on ES values, a direct comparison of 
our methodology and results with other studies is difficult. However, 
ongoing studies corroborate that approximately one-third of the vari
ability in the ecological status of European surface waters can be 
attributed to chemical mixtures (Posthuma et al., 2019a). In terms of the 
magnitude of adverse effects of chemical pollution on ecosystem health, 
our results are similar to those from Posthuma et al. (2019a). Our 
methodology could potentially serve as an additional risk assessment 
tool for informed decisions on water quality management, as the eco
nomic outcome is understandable to policymakers given the practical 
decision context. 

4.4. Outlook and recommendation 

Although this paper explicitly focuses on the use of monetary units to 
express ESs, we would like to point out our work does not suggest that 

nature should be treated as private commodities that can be traded in 
private markets, nor does it imply that nature only exists to ‘serve’ 
humans. Instead, our message is simple: ecosystems are essential to 
human well-being and deserve social recognition. Quantification of ESs 
in financial terms may help society make better decisions, especially in 
the many cases where trade-off exists (e.g. land use options). Monetary 
value is understandable and easy to communicate, and could provide 
efficient use of limited funds in the context of nature conservation and 
restoration. Additionally, the explicit valuation of ESs is transparent, 
which is a crucial component in democratic decision processes. There
fore, the valuation of ESs is inevitable to demonstrate the crucial 
contribution of ecosystems to societies. 

The major achievement of this study is the stepwise approach to 
quantifying the impacts of chemical exposures on diversity, productivity 
and total value that ecosystems provide. The case studies of polluted 
sediments in the Netherlands and Flanders are intended to illustrate the 
impact magnitude in monetary units and the feasibility of the proposed 
approach. We consider our study as a first move linking pollutant con
centrations to ecosystem service loss. Given the rough estimates in the 
present study, we identified the main uncertainties in each step and 
recommended further research for developing the proposed methodol
ogy. We encourage the application and refinement of this systematic 
methodology, which will contribute to thorough assessments, manage
ment and communication of chemical risks to ecosystems. 
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