, on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin, Off. J. Eur. Union, vol.15, issue.37, pp.1-72, 2009.

, laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, European Commission. Commission Regulation, vol.152, issue.470, pp.11-22, 2009.

, Commission Regulation (EU) 2019/1871 of 7 November 2019 on reference points for action for non-allowed pharmacologically active substances present in food of animal origin and repealing Decision 2005/34/EC (Text with EEA relevance), Off. J. Eur. Union, vol.289, pp.41-46, 2019.

, Regulation (EU) 2017/625 of the European Parliament and of the Council of 15 March 2017 on official controls and other official activities performed to ensure the application of food and feed law, rules on animal health and welfare, plant health and plant protection products, European Commission, vol.95, pp.1-42, 2017.

, implementing Council Directive. 96/23/EC concerning the performance of analytical methods and interpretation of results, European Commission. Commission Decision, vol.221, pp.8-36, 2002.

, Biosensors, vol.10, pp.31-38, 2020.

H. Watkins and I. Ko?árová, Broad Spectrum Detection of Antibiotic Residues in Poultry Meat by a Multi-Plate Assay. Folia Vet, vol.63, pp.9-17, 2019.

M. G. Pikkemaat, M. L. Rapallini, T. Zuidema, J. W. Elferink, S. Oostra-van-dijk et al., Screening methods for the detection of antibiotic residues in slaughter animals: Comparison of the European Union Four-Plate Test, the Nouws Antibiotic Test and the PremiTest (applied to muscle and kidney), Food Addit. Contam, vol.28, pp.26-34, 2011.

C. Xing, X. Jing, X. Zhang, and J. Yuan, Ultrasensitive indirect competitive ELISA and strip sensor for detection of furazolidone metabolite in animal tissues, Food Agric. Immunol, vol.28, pp.1269-1282, 2017.

V. Gaudin, C. Hedou, and E. Verdon, Validation of 2 ELISA kits for the screening of tylosin and streptomycin in honey according to the European decision EC/2002/657, Food Addit. Contam. Part A, vol.30, pp.93-109, 2013.

S. Han, T. Zhou, B. Yin, and P. He, A sensitive and semi-quantitative method for determination of multi-drug residues in animal body fluids using multiplex dipstick immunoassay, Anal. Chim. Acta, vol.927, pp.64-71, 2016.

W. Reybroeck, S. Ooghe, H. D. Brabander, and E. Daeseleire, Validation of the Tetrasensor Honey Test Kit for the Screening of Tetracyclines in Honey, J. Agric. Food Chem, vol.55, pp.8359-8366, 2007.

E. Dubreil, S. Gautier, M. P. Fourmond, M. Bessiral, M. Gaugain et al., Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS, Food Addit. Contam. Part A, vol.34, pp.453-468, 2017.
URL : https://hal.archives-ouvertes.fr/anses-01419484

J. Kang, S. J. Park, H. C. Park, M. A. Hossain, M. A. Kim et al., Multiresidue Screening of Veterinary Drugs in Meat, Milk, Egg, and Fish Using Liquid Chromatography Coupled with Ion Trap Time-of-Flight Mass Spectrometry, Appl. Biochem. Biotechnol, vol.182, pp.1-18, 2016.

J. Gooch, B. Daniel, M. Parkin, and N. Frascione, Developing aptasensors for forensic analysis, TrAC Trends Anal. Chem, vol.94, pp.150-160, 2017.

P. Yáñez-sedeño, L. Agüí, R. Villalonga, and J. M. Pingarrón, Biosensors in forensic analysis. A review, Anal. Chim. Acta, vol.823, pp.1-19, 2014.

F. Aberl and C. Kosslinger, Biosensor-based methods in clinical diagnosis, Mol. Diagn. Infect. Dis, vol.13, pp.503-517, 1998.

C. I. Justino, T. A. Rocha-santos, and A. C. Duarte, Review of analytical figures of merit of sensors and biosensors in clinical applications, Trends Anal. Chem, vol.29, pp.1172-1183, 2010.

V. Velusamy, K. Arshak, O. Korostynska, K. Oliwa, and C. Adley, An overview of foodborne pathogen detection: In the perspective of biosensors, Biotechnol. Adv, vol.28, pp.232-254, 2010.

V. Gaudin, Advances in biosensor development for the screening of antibiotic residues in food products of animal origin-A comprehensive review, Biosens. Bioelectron, vol.90, pp.363-377, 2017.
URL : https://hal.archives-ouvertes.fr/anses-01418257

G. A. Miller, R. C. Clark, and E. J. Jessee, Production of monoclonal antibodies to salinomycin, Hybridoma, vol.5, pp.353-360, 1986.

C. Van-de-water, N. Haagsma, P. J. Van-kooten, and W. Van-eden, An enzyme linked immunosorbent assay for the determination of chloramphenicol using a monoclonal antibody, Z. Lebensm.-Unters. Forsch, vol.185, pp.202-207, 1987.

D. E. Dixon-holland, ELISA and its application for residue analysis of antibiotics and drugs in products of animal origin, Analysis of Antibiotic/Drug Residues in Food Products of Animal Origin, pp.57-74, 1992.

N. Haagsma and C. Van-de-water, Immunochemical methods in the analysis of veterinary drug residues, Analysis of Antibiotic/Drug Residues in Food Products of Animal Origin, pp.81-97, 1992.

S. Tombelli, M. Minunni, and M. Mascini, Analytical applications of aptamers, Biosens. Bioelectron, vol.20, pp.2424-2434, 2005.

S. D. Jayasena, Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics, Clin. Chem, vol.45, 1628.

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, vol.249, pp.505-510, 1990.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, vol.355, pp.564-566, 1992.

J. R. Lorsch and J. W. Szostak, In vitro selection of RNA aptamers specific for cyanocobalamin, Biochemistry, vol.33, pp.973-982, 1994.

R. Yamamoto, S. Toyoda, P. Viljanen, K. Machida, S. Nishikawa et al., In vitro selection of RNA aptamers that can bind specifically to Tat protein of HIV-1, Nucleic Acids Symp. Ser, pp.145-146, 1995.

L. L. Leung, Application of combinatorial libraries and protein engineering to the discovery of novel anti-thrombotic drugs, Thromb. Haemost, vol.74, pp.373-376, 1995.

Y. S. Kim and M. B. Gu, Advances in Aptamer Screening and Small Molecule Aptasensors, In Biosensors Based on Aptamers and Enzymes

M. B. Gu and H. Kim, , pp.29-67, 2014.

R. Conrad and A. D. Ellington, Detecting Immobilized Protein Kinase C Isozymes with RNA Aptamers, Anal. Biochem, vol.242, pp.261-265, 1996.

S. Weiss, D. Proske, M. Neumann, M. H. Groschup, H. A. Kretzschmar et al., RNA aptamers specifically interact with the prion protein PrP, J. Virol, vol.71, pp.8790-8797, 1997.

K. A. Davis, B. Abrams, Y. Lin, and S. D. Jayasena, Staining of cell surface human CD4 with 2 -Fpyrimidine-containing RNA aptamers for flow cytometry, Nucleic Acids Res, vol.26, pp.3915-3924, 1998.

E. N. Brody and L. Gold, Aptamers as therapeutic and diagnostic agents, Rev. Mol. Biotechnol, vol.74, pp.5-13, 2000.

M. T. Muldoon, C. K. Holtzapple, S. S. Deshpande, R. C. Beier, and L. H. Stanker, Development of a monoclonal antibody-based cELISA for the analysis of sulfadimethoxine. 1. Development and characterization of monoclonal antibodies and molecular modeling studies of antibody recognition, J. Agric. Food Chem, vol.48, pp.537-544, 2000.

H. Hasegawa, N. Savory, K. Abe, and K. Ikebukuro, Methods for Improving Aptamer Binding Affinity, Molecules, vol.21, p.421, 2016.

Y. S. Kwon, N. H. Ahmad-raston, and M. B. Gu, An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity, Chem. Commun, vol.50, pp.40-42, 2014.

R. E. Wang, H. Wu, Y. Niu, and J. Cai, Improving the stability of aptamers by chemical modification, Curr. Med. Chem, vol.18, pp.4126-4138, 2011.

L. Hao, N. Duan, S. Wu, B. Xu, and . Wang, -aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles, Z. Chemiluminescent aptasensor for chloramphenicol based on N, vol.407, issue.4, pp.7907-7915, 2015.

E. González-fernández, N. De-los-santos-Álvarez, M. J. Lobo-castañón, A. J. Miranda-ordieres, and P. Tuñón-blanco, Aptamer-Based Inhibition Assay for the Electrochemical Detection of Tobramycin Using Magnetic Microparticles, Electroanalysis, vol.23, pp.43-49, 2011.

N. R. Ha, I. P. Jung, I. J. La, H. S. Jung, and M. Y. Yoon, Ultra-sensitive detection of kanamycin for food safety using a reduced graphene oxide-based fluorescent aptasensor, vol.7, p.40305, 2017.

Y. Tang, C. Gu, C. Wang, B. Song, X. Zhou et al., Evanescent wave aptasensor for continuous and online aminoglycoside antibiotics detection based on target binding facilitated fluorescence quenching, Biosens. Bioelectron, vol.102, pp.646-651, 2018.

C. Yan, J. Zhang, L. Yao, F. Xue, J. Lu et al., Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food, Food Chem, vol.260, pp.208-212, 2018.

F. Li, Y. Guo, X. Wang, and X. Sun, Multiplexed aptasensor based on metal ions labels for simultaneous detection of multiple antibiotic residues in milk, Biosens. Bioelectron, vol.115, pp.7-13, 2018.

K. Zhang, N. Gan, Z. Shen, J. Cao, F. Hu et al., Microchip electrophoresis based aptasensor for multiplexed detection of antibiotics in foods via a stir-bar assisted multi-arm junctions recycling for signal amplification, Biosens. Bioelectron, vol.130, pp.139-146, 2019.

H. Youn, K. Lee, J. Her, J. Jeon, J. Mok et al., Aptasensor for multiplex detection of antibiotics based on FRET strategy combined with aptamer/graphene oxide complex, Sci. Rep, vol.9, p.7659, 2019.

Y. Wang, N. Gan, Y. Zhou, T. Li, F. Hu et al., Novel label-free and high-throughput microchip electrophoresis platform for multiplex antibiotic residues detection based on aptamer probes and target catalyzed hairpin assembly for signal amplification, Biosens. Bioelectron, vol.97, pp.100-106, 2017.

L. Hao, H. Gu, N. Duan, S. Wu, and Z. Wang, A chemiluminescent aptasensor for simultaneous detection of three antibiotics in milk, Anal. Methods, vol.8, pp.7929-7936, 2016.

Y. Wu, P. Huang, and F. Wu, A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics, Food Chem, vol.304, 2020.

T. Nguyen, J. P. Hilton, and Q. Lin, Emerging applications of aptamers to micro-and nanoscale biosensing, Microfluid. Nanofluidics, vol.6, 2009.

T. Wang, C. Chen, L. M. Larcher, R. A. Barrero, and R. N. Veedu, Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development, Biotechnol. Adv, vol.37, pp.28-50, 2019.

F. Pfeiffer and G. Mayer, Selection and Biosensor Application of Aptamers for Small Molecules, Front. Chem, 2016.

H. Kaur, J. G. Bruno, A. Kumar, and T. K. Sharma, Aptamers in the Therapeutics and Diagnostics Pipelines, vol.8, pp.4016-4032, 2018.

A. D. Ellington and J. W. Szostak, Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures, Nature, vol.355, pp.850-852, 1992.

J. Mehta, B. Van-dorst, E. Rouah-martin, W. Herrebout, M. L. Scippo et al., In vitro selection and characterization of DNA aptamers recognizing chloramphenicol, J. Biotechnol, vol.155, pp.361-369, 2011.

D. H. Burke, D. C. Hoffman, A. Brown, M. Hansen, A. Pardi et al., RNA aptamers to the peptidyl transferase inhibitor chloramphenicol, Chem. Biol, vol.4, pp.833-843, 1997.

A. S. Sadeghi, M. Mohsenzadeh, K. Abnous, S. M. Taghdisi, and M. Ramezani, Development and characterization of DNA aptamers against florfenicol: Fabrication of a sensitive fluorescent aptasensor for specific detection of florfenicol in milk, Talanta, vol.182, pp.193-201, 2018.

C. Baugh, D. Grate, and C. Wilson, 2.8 Å crystal structure of the malachite green, J. Mol. Biol, vol.301, pp.117-128, 2000.

J. H. Niazi, S. J. Lee, Y. S. Kim, and M. B. Gu, ssDNA aptamers that selectively bind oxytetracycline, Bioorg. Med. Chem, vol.16, pp.1254-1261, 2008.

C. Berens, A. Thain, and R. Schroeder, A tetracycline-binding RNA aptamer, Bioorg. Med. Chem, vol.9, pp.2549-2556, 2001.

J. H. Niazi, S. J. Lee, and M. B. Gu, Single-stranded DNA aptamers specific for antibiotics tetracyclines, Bioorg. Med. Chem, vol.16, pp.7245-7253, 2008.

H. Schürer, K. Stembera, D. Knoll, G. Mayer, M. Blind et al., Aptamers that bind to the antibiotic moenomycin A, Bioorg. Med. Chem, vol.9, pp.2557-2563, 2001.

N. Paniel, G. Istamboulié, A. Triki, C. Lozano, L. Barthelmebs et al., Selection of DNA aptamers against penicillin G using Capture-SELEX for the development of an impedimetric sensor, Talanta, vol.162, pp.232-240, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01770982

C. S. Lorenz, Aptamers to Antibiotics, The Aptamer Handbook

D. S. Klussmann, . Ed, &. Wiley-vch-verlag-gmbh, . Co, and . Kgaa, , pp.116-130, 2006.

A. Mehlhorn, P. Rahimi, and Y. Joseph, Aptamer-Based Biosensors for Antibiotic Detection: A Review, Biosensors, vol.8, 2018.

Y. Yang, S. Yin, Y. Li, D. Lu, J. Zhang et al., Application of aptamers in detection and chromatographic purification of antibiotics in different matrices, TrAC Trends Anal. Chem, vol.95, pp.1-22, 2017.

A. A. Rowe, E. A. Miller, and K. W. Plaxco, Reagentless Measurement of Aminoglycoside Antibiotics in Blood Serum via an Electrochemical, Ribonucleic Acid Aptamer-Based Biosensor, Anal. Chem, vol.82, pp.7090-7095, 2010.

B. Piro, S. Shi, S. Reisberg, V. Noël, and G. Anquetin, Comparison of Electrochemical Immunosensors and Aptasensors for Detection of Small Organic Molecules in Environment, Food Safety, Biosensors, vol.6, issue.7, 2016.

J. M. Liu, Y. Hu, Y. K. Yang, H. Liu, G. Z. Fang et al., Emerging functional nanomaterials for the detection of food contaminants, Trends Food Sci. Technol, vol.71, pp.94-106, 2018.

Y. Zhou, C. Mahapatra, H. Chen, X. Peng, S. Ramakrishna et al., Recent developments in fluorescent aptasensors for detection of antibiotics, Curr. Opin. Biomed. Eng, vol.13, pp.16-24, 2020.

J. Wang, T. Lu, Y. Hu, X. Wang, and Y. Wu, A label-free and carbon dots based fluorescent aptasensor for the detection of kanamycin in milk, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.226, p.117651, 2020.

Y. Wang, T. Ma, S. Ma, Y. Liu, Y. Tian et al., Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots, Microchim. Acta, vol.184, pp.203-210, 2017.

M. Ramezani, N. M. Danesh, P. Lavaee, K. Abnous, and S. M. Taghdisi, A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles, Sens. Actuators B Chem, vol.222, pp.1-7, 2016.

Y. He, X. Wen, B. Zhang, and Z. Fan, Novel aptasensor for the ultrasensitive detection of kanamycin based on grapheneoxide quantum-dot-linked single-stranded DNA-binding protein, Sens. Actuators B Chem, vol.265, pp.20-26, 2018.

J. Chen, Z. Li, J. Ge, R. Yang, L. Zhang et al., An aptamer-based signal-on bio-assay for sensitive and selective detection of Kanamycin A by using gold nanoparticles, Talanta, vol.139, pp.226-232, 2015.

K. Ling, H. Jiang, L. Zhang, Y. Li, L. Yang et al., A self-assembling RNA aptamer-based nanoparticle sensor for fluorometric detection of Neomycin B in milk, Anal. Bioanal. Chem, vol.408, pp.3593-3600, 2016.

A. Y. Lee, N. R. Ha, I. P. Jung, S. H. Kim, A. R. Kim et al., Development of a ssDNA aptamer for detection of residual benzylpenicillin, Anal. Biochem, vol.531, pp.1-7, 2017.

C. Tu, Y. Dai, Y. Zhang, W. Wang, and L. Wu, A simple fluorescent strategy based on triple-helix molecular switch for sensitive detection of chloramphenicol, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.224, 2020.

X. Ma, H. Li, S. Qiao, C. Huang, Q. Liu et al., A simple and rapid sensing strategy based on structure-switching signaling aptamers for the sensitive detection of chloramphenicol

R. Sharma, U. S. Akshath, P. Bhatt, and K. S. Raghavarao, Fluorescent aptaswitch for chloramphenicol detection-Quantification enabled by immobilization of aptamer, Sens. Actuators B Chem, vol.290, pp.110-117, 2019.

S. Zhang, L. Ma, K. Ma, B. Xu, L. Liu et al., Label-Free Aptamer-Based Biosensor for Specific Detection of Chloramphenicol Using AIE Probe and Graphene Oxide, ACS Omega, vol.3, pp.12886-12892, 2018.

M. Alibolandi, F. Hadizadeh, F. Vajhedin, K. Abnous, and M. Ramezani, Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet, Mater. Sci. Eng. C, vol.48, pp.611-619, 2015.

S. Liu, J. Bai, Y. Huo, B. Ning, Y. Peng et al., A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol, Biosens. Bioelectron, vol.149, 2020.

Q. Yang, L. Zhou, Y. X. Wu, K. Zhang, Y. Cao et al., A two dimensional metal-organic framework nanosheets-based fluorescence resonance energy transfer aptasensor with circular strand-replacement DNA polymerization target-triggered amplification strategy for homogenous detection of antibiotics, Anal. Chim. Acta, vol.1020, pp.1-8, 2018.

Y. Wang, N. Gan, Y. Zhou, T. Li, Y. Cao et al., Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics, Biosens. Bioelectron, vol.87, pp.508-513, 2017.

Y. B. Miao, H. X. Ren, N. Gan, Y. Zhou, Y. Cao et al., A homogeneous and "off-on" fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes, Anal. Chim. Acta, vol.929, pp.49-55, 2016.

Z. Yan, H. Yi, L. Wang, X. Zhou, R. Yan et al., Fluorescent aptasensor for ofloxacin detection based on the aggregation of gold nanoparticles and its effect on quenching the fluorescence of Rhodamine B, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.221, 2019.

S. Dolati, M. Ramezani, M. S. Nabavinia, V. Soheili, K. Abnous et al., Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay, Anal. Biochem, vol.549, pp.124-129, 2018.

M. Babaei, S. H. Jalalian, H. Bakhtiari, M. Ramezani, K. Abnous et al., Aptamer-Based Fluorescent Switch for Sensitive Detection of Oxytetracycline, Aust. J. Chem, vol.70, pp.718-723, 2017.

K. M. Song, E. Jeong, W. Jeon, H. Jo, and C. Ban, A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine, Biosens. Bioelectron, vol.33, pp.113-119, 2012.

Y. P. Xing, C. Liu, X. H. Zhou, and H. C. Shi, Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay, Sci. Rep, vol.5, 2015.

Y. Zhu, W. Li, S. Tan, and T. Chen, Label-Free and Simple G-quadruplex-based Turn-Off Fluorescence Assay for the Detection of Kanamycin, Anal. Lett, vol.51, pp.1718-1729, 2018.

S. M. Taghdisi, N. M. Danesh, M. A. Nameghi, M. Ramezani, and K. Abnous, A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum, Food Chem, vol.203, pp.145-149, 2016.

N. Gan, C. Ou, H. Tang, Y. Zhou, and J. Cao, A homogenous "signal-on" aptasensor for antibiotics based on a single stranded DNA binding protein-quantum dot aptamer probe coupling exonuclease-assisted target recycling for signal amplification, vol.7, pp.8381-8387, 2017.

J. Zeng, N. Gan, K. Zhang, L. He, J. Lin et al., Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods, Talanta, vol.199, pp.491-498, 2019.

Y. B. Miao, H. X. Ren, N. Gan, Y. Cao, T. Li et al., Fluorescent aptasensor for chloramphenicol detection using DIL-encapsulated liposome as nanotracer, Biosens. Bioelectron, vol.81, pp.454-459, 2016.

Z. Tan, H. Xu, G. Li, X. Yang, and M. M. Choi, Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.149, pp.615-620, 2015.

S. Wu, H. Zhang, Z. Shi, N. Duan, C. Fang et al., Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles, Food Control, vol.50, pp.597-604, 2015.

C. Fang, S. Wu, N. Duan, S. Dai, and Z. Wang, Highly sensitive aptasensor for oxytetracycline based on upconversion and magnetic nanoparticles, Anal. Methods, vol.7, pp.2585-2593, 2015.

C. Sun, R. Su, J. Bie, H. Sun, S. Qiao et al., Label-free fluorescent sensor based on aptamer and thiazole orange for the detection of tetracycline, Dyes, vol.149, pp.867-875, 2018.

O. Qin, Y. Liu, Q. Chen, Z. Guo, J. Zhao et al., Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor, Food Control, vol.81, pp.156-163, 2017.

C. Zhou, H. Zou, C. Sun, D. Ren, W. Xiong et al., Fluorescent aptasensor for detection of four tetracycline veterinary drugs in milk based on catalytic hairpin assembly reaction and displacement of G-quadruplex, Anal. Bioanal. Chem, vol.410, pp.2981-2989, 2018.

X. Liu, T. Gao, X. Gao, T. Ma, Y. Tang et al., An aptamer based sulfadimethoxine assay that uses magnetized upconversion nanoparticles, vol.184, pp.3557-3563, 2017.

C. Liu, C. Lu, Z. Tang, X. Chen, G. Wang et al., Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin, Microchim. Acta, vol.182, pp.2567-2575, 2015.

P. Ma, H. Ye, J. Deng, I. M. Khan, L. Yue et al., A fluorescence polarization aptasensor coupled with polymerase chain reaction and streptavidin for chloramphenicol detection, Talanta, 2019.

X. Lin, J. Su, H. Lin, X. Sun, B. Liu et al., Luminescent carbon nanodots based aptasensors for rapid detection of kanamycin residue, Talanta, vol.202, pp.452-459, 2019.

T. Ye, Y. Peng, M. Yuan, H. Cao, J. Yu et al., A "turn-on" fluorometric assay for kanamycin detection by using silver nanoclusters and surface plasmon enhanced energy transfer, Microchim. Acta, vol.186, 2019.

C. Feng, S. Dai, and L. Wang, Optical aptasensors for quantitative detection of small biomolecules: A review, Biosens. Bioelectron, vol.59, pp.64-74, 2014.

B. J. Alyamani, O. A. Alsager, and M. Zourob, Label-Free Fluorescent Aptasensor for Small Targets via Displacement of Groove Bound Curcumin Molecules, Sensors, vol.19, p.4181, 2019.

E. Bagheri, K. Abnous, M. Alibolandi, M. Ramezani, and S. M. Taghdisi, Triple-helix molecular switch-based aptasensors and DNA sensors, Biosens. Bioelectron, vol.111, pp.1-9, 2018.

S. Sharifi, S. Z. Vahed, E. Ahmadian, S. M. Dizaj, A. Eftekhari et al., Detection of pathogenic bacteria via nanomaterials-modified aptasensors, Biosens. Bioelectron, 2019.

L. Wang, A. Wu, and G. Wei, Graphene-based aptasensors: From molecule-interface interactions to sensor design and biomedical diagnostics, Analyst, vol.143, pp.1526-1543, 2018.

A. Karimzadeh, M. Hasanzadeh, N. Shadjou, and M. De-la-guardia, Optical bio(sensing) using nitrogen doped graphene quantum dots: Recent advances and future challenges, TrAC Trends Anal. Chem, vol.108, pp.110-121, 2018.

A. Bose and T. W. Wong, Chapter 11-Nanotechnology-Enabled Drug Delivery for Cancer Therapy, In Nanotechnology Applications for Tissue Engineering

S. Thomas, Y. Grohens, and N. Ninan, , pp.173-193, 2015.

M. Stanisavljevic, S. Krizkova, M. Vaculovicova, R. Kizek, and V. Adam, Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application, Biosens. Bioelectron, vol.74, pp.562-574, 2015.

J. W. Zhou, X. M. Zou, S. H. Song, and G. H. Chen, Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues, J. Agric. Food Chem, vol.66, pp.1307-1319, 2018.

C. Fenzl, T. Hirsch, and A. J. Baeumner, Nanomaterials as versatile tools for signal amplification in (bio)analytical applications, TrAC Trends Anal. Chem, vol.79, pp.306-316, 2016.

Y. Xu, C. Lu, Y. Sun, Y. Shao, Y. Cai et al., A colorimetric aptasensor for the antibiotics oxytetracycline and kanamycin based on the use of magnetic beads and gold nanoparticles, Microchim. Acta, vol.185, 2018.

Y. Miao, N. Gan, T. Li, H. Zhang, Y. Cao et al., A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification, Sens. Actuators B Chem, vol.220, pp.679-687, 2015.

Q. Luan, Y. Miao, N. Gan, Y. Cao, T. Li et al., A POCT colorimetric aptasensor for streptomycin detection using porous silica beads-enzyme linked polymer aptamer probes and exonuclease-assisted target recycling for signal amplification, Sens. Actuators B Chem, pp.349-358, 2017.

Q. Luan, N. Gan, Y. Cao, and T. Li, Mimicking an Enzyme-Based Colorimetric Aptasensor for Antibiotic Residue Detection in Milk Combining Magnetic Loop-DNA Probes and CHA-Assisted Target Recycling Amplification, J. Agric. Food Chem, vol.65, pp.5731-5740, 2017.

X. Cui, R. Li, X. Liu, J. Wang, X. Leng et al., Low-background and visual detection of antibiotic based on target-activated colorimetric split peroxidase DNAzyme coupled with dual nicking enzyme signal amplification, Anal. Chim. Acta, vol.997, pp.1-8, 2018.

C. Wang, D. Chen, Q. Wang, and R. Tan, Kanamycin detection based on the catalytic ability enhancement of gold nanoparticles, Biosens. Bioelectron, vol.91, pp.262-267, 2017.

J. Zhao, Y. Wu, H. Tao, H. Chen, W. Yang et al., Colorimetric detection of streptomycin in milk based on peroxidase-mimicking catalytic activity of gold nanoparticles, vol.7, pp.38471-38478, 2017.

Z. Liu, Y. Zhang, Y. Xie, Y. Sun, K. Bi et al., An aptamer-based colorimetric sensor for streptomycin and its application in food inspection, Chem. Res. Chin. Univ, vol.33, pp.714-720, 2017.

Q. Ma, Y. Wang, J. Jia, and Y. Xiang, Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles, Food Chem, vol.249, pp.98-103, 2018.

J. Jia, S. Yan, X. Lai, Y. Xu, T. Liu et al., Colorimetric Aptasensor for Detection of Malachite Green in Fish Sample Based on RNA and Gold Nanoparticles, Food Anal. Methods, vol.11, pp.1668-1676, 2018.

Q. Luan, Y. Xi, N. Gan, Y. Cao, T. Li et al., A facile colorimetric aptamer assay for small molecule detection in food based on a magnetic single-stranded DNA binding protein-linked composite probe, Sens. Actuators B Chem, vol.239, pp.979-987, 2017.

Q. Luan, X. Xiong, N. Gan, Y. Cao, T. Li et al., A multiple signal amplified colorimetric aptasensor for antibiotics measurement using DNAzyme labeled Fe-MIL-88-Pt as novel peroxidase mimic tags and CSDP target-triggered cycles, Talanta, vol.187, pp.27-34, 2018.

W. Huang, H. Zhang, G. Lai, S. Liu, B. Li et al., Sensitive and rapid aptasensing of chloramphenicol by colorimetric signal transduction with a DNAzyme-functionalized gold nanoprobe, Food Chem, vol.270, pp.287-292, 2019.

M. Javidi, M. R. Housaindokht, A. Verdian, and B. M. Razavizadeh, Detection of chloramphenicol using a novel apta-sensing platform based on aptamer terminal-lock in milk samples, Anal. Chim. Acta, vol.1039, pp.116-123, 2018.

J. Du, Q. Jiang, X. Lu, L. Chen, Y. Zhang et al., Detection of sulfadimethoxine using optical images of liquid crystals, Analyst, vol.144, pp.1761-1767, 2019.

C. Lu, Z. Tang, C. Liu, L. Kang, and F. Sun, Magnetic-nanobead-based competitive enzyme-linked aptamer assay for the analysis of oxytetracycline in food, Anal. Bioanal. Chem, vol.407, pp.4155-4163, 2015.

C. H. Kim, L. P. Lee, J. R. Min, M. W. Lim, and S. H. Jeong, An indirect competitive assay-based aptasensor for detection of oxytetracycline in milk, Biosens. Bioelectron, vol.51, pp.426-430, 2014.

S. Wang, J. Liu, W. Yong, Q. Chen, L. Zhang et al., A direct competitive assay-based aptasensor for sensitive determination of tetracycline residue in Honey, Talanta, vol.131, pp.562-569, 2015.

S. Wang, W. Yong, J. Liu, L. Zhang, Q. Chen et al., Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey, Biosens. Bioelectron, vol.57, pp.192-198, 2014.

Z. Zhang, Y. Tian, P. Huang, and F. Y. Wu, Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics, Talanta, vol.208, p.120342, 2020.

Y. Luo, J. Xu, Y. Li, H. Gao, J. Guo et al., A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk, Food Control, vol.54, pp.7-15, 2015.

M. Ramezani, N. M. Danesh, P. Lavaee, K. Abnous, and S. M. Taghdisi, A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline, Biosens. Bioelectron, vol.70, pp.181-187, 2015.

L. He, Y. Luo, W. Zhi, and P. Zhou, Colorimetric Sensing of Tetracyclines in Milk Based on the Assembly of Cationic Conjugated Polymer-Aggregated Gold Nanoparticles, Food Anal. Methods, vol.6, pp.1704-1711, 2013.

A. S. Emrani, N. M. Danesh, P. Lavaee, M. Ramezani, K. Abnous et al., Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles, Food Chem, vol.190, pp.115-121, 2016.

K. M. Song, E. Jeong, W. Jeon, M. Cho, and C. Ban, Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods, Anal. Bioanal. Chem, vol.402, pp.2153-2161, 2012.

N. Alizadeh, A. Salimi, and R. Hallaj, Hemin/G-Quadruplex Horseradish Peroxidase-Mimicking DNAzyme: Principle and Biosensing Application, Adv. Biochem. Eng. Biotechnol, vol.170, pp.85-106, 2020.

D. Wang, C. Ge, and L. Zeng, Circular strand displacement polymerization reaction: A promising technique?, Bioanalysis, vol.6, pp.899-901, 2014.

J. Liu, D. Mazumdar, and Y. Lu, A simple and sensitive "dipstick" test in serum based on lateral flow separation of aptamer-linked nanostructures, Angew. Chem. Int. Ed. Engl, vol.45, pp.7955-7959, 2006.

K. Abnous, N. M. Danesh, M. Ramezani, M. Alibolandi, A. S. Emrani et al., A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer, Microchim. Acta, vol.185, 2018.

L. Yang, H. Ni, C. Li, X. Zhang, K. Wen et al., Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers, Sens. Actuators B Chem, vol.281, pp.801-811, 2019.

Y. Yao, X. Wang, W. Duan, and F. Li, A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads, Analyst, vol.143, pp.709-714, 2018.

K. H. Leung, H. Z. He, D. S. Chan, W. C. Fu, C. H. Leung et al., An oligonucleotide-based switch-on luminescent probe for the detection of kanamycin in aqueous solution, Sens. Actuators B Chem, vol.177, pp.487-492, 2013.

S. Cheng, H. Liu, H. Zhang, G. Chu, Y. Guo et al., Ultrasensitive electrochemiluminescence aptasensor for kanamycin detection based on silver nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide, Sens. Actuators B Chem, vol.304, 2020.

N. De-los-santos-Álvarez, M. J. Lobo-castañón, A. J. Miranda-ordieres, and P. Tuñón-blanco, SPR sensing of small molecules with modified RNA aptamers: Detection of neomycin B, Biosens. Bioelectron, vol.24, pp.2547-2553, 2009.

Y. Jiang, D. W. Sun, H. Pu, and Q. Wei, Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor, Talanta, vol.197, pp.151-158, 2019.

Z. Wu, AuNP Tetramer-Based Aptasensor for SERS Sensing of Oxytetracycline, Food Anal. Methods, vol.12, pp.1121-1127, 2019.

F. Meng, X. Ma, N. Duan, S. Wu, Y. Xia et al., Ultrasensitive SERS aptasensor for the detection of oxytetracycline based on a gold-enhanced nano-assembly, Talanta, vol.165, pp.412-418, 2017.

H. Li, Q. Chen, M. M. Hassan, X. Chen, Q. Ouyang et al., A magnetite/PMAA nanospheres-targeting SERS aptasensor for tetracycline sensing using mercapto molecules embedded core/shell nanoparticles for signal amplification, Biosens. Bioelectron, vol.92, pp.192-199, 2017.

W. Yan, L. Yang, H. Zhuang, H. Wu, and J. Zhang, Engineered "hot" core-shell nanostructures for patterned detection of chloramphenicol, Biosens. Bioelectron, vol.78, pp.67-72, 2016.

S. Yan, X. Lai, Y. Wang, N. Ye, and Y. Xiang, Label free aptasensor for ultrasensitive detection of tobramycin residue in pasteurized cow's milk based on resonance scattering spectra and nanogold catalytic amplification, Food Chem, vol.295, pp.36-41, 2019.

D. M. Wang, K. L. Lin, and C. Z. Huang, Carbon dots-involved chemiluminescence: Recent advances and developments, Luminescence, vol.34, pp.4-22, 2019.

J. Liu, J. H. Lee, and Y. Lu, Quantum Dot Encoding of Aptamer-Linked Nanostructures for One-Pot Simultaneous Detection of Multiple Analytes, Anal. Chem, vol.79, pp.4120-4125, 2007.

S. Li, J. Liu, Z. Chen, Y. Lu, S. S. Low et al., Electrogenerated chemiluminescence on smartphone with graphene quantum dots nanocomposites for Escherichia Coli detection, Sens. Actuators B Chem, vol.297, 2019.

P. Li, J. Yu, K. Zhao, A. Deng, and J. Li, Efficient enhancement of electrochemiluminescence from tin disulfide quantum dots by hollow titanium dioxide spherical shell for highly sensitive detection of chloramphenicol, Biosens. Bioelectron, vol.147, 2020.

H. Tang, C. Zhu, G. Meng, and N. Wu, Review-Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring, J. Electrochem. Soc, vol.165, pp.3098-3118, 2018.

D. L. Andrews, Rayleigh Scattering and Raman Effect, Theory, Encyclopedia of Spectroscopy and Spectrometry, pp.924-930, 2017.

S. G. Stanton, R. Pecora, and B. S. Hudson, Resonance enhanced dynamic Rayleigh scattering, J. Chem. Phys, vol.75, pp.5615-5626, 1981.

H. Ouyang, A. Liang, and Z. Jiang, A simple and selective resonance Rayleigh scattering-energy transfer spectral method for determination of trace neomycin sulfate using Cu2O particle as probe, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.190, pp.268-273, 2018.

J. Zhu, S. Liu, Z. Liu, Y. Li, J. Tian et al., A highly sensitive and selective assay of doxycycline by dualwavelength overlapping resonance Rayleigh scattering, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.124, pp.237-242, 2014.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2020 by the author. Licensee MDPI