F. Farabegoli, L. Blanco, L. P. Rodriguez, J. M. Vieites, and A. G. Cabado, Phycotoxins in marine shellfish: Origin, occurrence and effects on humans, Mar. Drugs, vol.16, 2018.

S. S. Khora and S. Jal, Occurrence of natural toxins in seafood, Microb. Contam. Food Degrad, pp.177-233, 2018.

, Marine biotoxins in shellfish-Pectenotoxin group, EFSA J, 1109.

, Marine biotoxins in shellfish-Yessotoxin group, EFSA J, vol.7, p.907, 2008.

, Mar. Drugs, vol.17, p.429, 2019.

F. Özogul, Hamed, I. Marine-based toxins and their health risk, Handbook of Food Bioengineering, Food Quality: Balancing Health and Disease

A. M. Holban, A. M. Grumezescu, and . Eds, , vol.13, pp.109-144, 2018.

, Marine biotoxins in shellfish-Azaspiracid group, EFSA J, vol.6, p.723, 2008.

, Scientific Opinion on marine biotoxins in shellfish-Cyclic imines (spirolides, gymnodimines, pinnatoxins and pteriatoxins), EFSA J, vol.8, 1628.

, Scientific Opinion on marine biotoxins in shellfish-Palytoxin group, EFSA J, vol.7, p.1393, 2009.

B. Espina and J. A. Rubiolo, Marine toxins and the cytoskeleton: Pectenotoxins, unusual macrolides that disrupt actin, FEBS J, vol.275, pp.6082-6088, 2008.

M. J. Twiner, P. Hess, M. Y. Dechraoui, T. Mcmahon, M. S. Samons et al., Cytotoxic and cytoskeletal effects of azaspiracid-1 on mammalian cell lines, Toxicon, vol.45, pp.891-900, 2005.

A. Takai, K. Sasaki, H. Nagai, G. Mieskes, M. Isobe et al., Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: Method of analysis of interactions of tight-binding ligands with target protein, Biochem. J, vol.306, pp.657-665, 1995.

J. Alexander, G. A. Atli-auðunsson, D. Benford, A. Cockburn, J. P. Cravedi et al., Marine biotoxins in shellfish-Okadaic acid and analogues, Scientific Opinion of the Panel on Contaminants in the Food chain, EFSA J, vol.589, pp.1-62, 2008.

A. Otero, M. J. Chapela, M. Atanassova, J. M. Vieites, and A. G. Cabado, Cyclic imines: Chemistry and mechanism of action: A review, Chem. Res. Toxicol, vol.24, pp.1817-1829, 2011.

J. Patocka, E. Nepovimova, Q. Wu, K. Kuca, . Palytoxin et al., Arch. Toxicol, vol.92, pp.143-156, 2018.

L. A. De-la-rosa, A. Alfonso, N. Vilarino, M. R. Vieytes, and L. M. Botana, Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxin, Biochem. Pharmacol, vol.61, pp.827-833, 2001.

B. Paz, A. H. Daranas, M. Norte, P. Riobo, J. M. Franco et al., Yessotoxins, a group of marine polyether toxins: An overview, Mar. Drugs, vol.6, pp.73-102, 2008.

M. J. Twiner, N. Rehmann, P. Hess, and G. J. Doucette, Azaspiracid shellfish poisoning: A review on the chemistry, ecology, and toxicology with an emphasis on human health impacts, Mar. Drugs, vol.6, pp.39-72, 2008.

K. Terao, E. Ito, T. Yanagi, and T. Yasumoto, Histopathological studies on experimental marine toxin poisoning. I. Ultrastructural changes in the small intestine and liver of suckling mice induced by dinophysistoxin-1 and pectenotoxin-1, Toxicon, vol.24, pp.1141-1151, 1986.

T. Aune, A. Espenes, J. A. Aasen, M. A. Quilliam, P. Hess et al., Study of possible combined toxic effects of azaspiracid-1 and okadaic acid in mice via the oral route, Toxicon, vol.60, pp.895-906, 2012.

E. Ito, M. Satake, K. Ofuji, M. Higashi, K. Harigaya et al., Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a new marine toxin isolated from mussels, Toxicon, vol.40, pp.193-203, 2002.

D. A. Fernandez, M. C. Louzao, N. Vilarino, B. Espina, M. Fraga et al., The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity, FEBS J, vol.280, pp.3906-3919, 2013.

P. J. Ferron, K. Hogeveen, V. Fessard, and L. Le-hegarat, Comparative analysis of the cytotoxic effects of okadaic acid-group toxins on human intestinal cell lines, Mar. Drugs, vol.12, pp.4616-4634, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082583

L. Hegarat, L. Jacquin, A. G. Bazin, E. Fessard, and V. , Genotoxicity of the marine toxin okadaic acid, in human Caco-2 cells and in mice gut cells, Environ. Toxicol, vol.21, pp.55-64, 2006.

M. Neunlist, L. Van-landeghem, M. M. Mahe, P. Derkinderen, S. B. Des-varannes et al., The digestive neuronal-glial-epithelial unit: A new actor in gut health and disease, Nat. Rev. Gastroenterol. Hepatol, vol.10, pp.90-100, 2013.

J. Cabarrocas, T. C. Savidge, and R. S. Liblau, Role of enteric glial cells in inflammatory bowel disease, Glia, vol.41, pp.81-93, 2003.

M. Neunlist, L. Van-landeghem, A. Bourreille, and T. Savidge, Neuro-glial crosstalk in inflammatory bowel disease, J. Intern. Med, vol.263, pp.577-583, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00281269

S. Ben-horin and Y. Chowers, Neuroimmunology of the gut: Physiology, pathology, and pharmacology, Curr. Opin. Pharmcol, vol.8, pp.490-495, 2008.

, Mar. Drugs, vol.17, p.24, 2019.

J. Yu, R. L. Carrier, J. C. March, and L. G. Griffith, Three dimensional human small intestine models for ADME-Tox studies, Drug Discov. Today, vol.19, pp.1587-1594, 2014.

M. Neunlist, P. Aubert, S. Bonnaud, L. Van-landeghem, E. Coron et al., Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway, Am. J. Physiol. Gastrointest. Liver Physiol, vol.292, pp.231-241, 2007.

L. Kermarrec, T. Durand, M. Neunlist, P. Naveilhan, and I. Neveu, Enteric glial cells have specific immunosuppressive properties, J. Neuroimmunol, pp.79-83, 2016.

F. Ochoa-cortes, F. Turco, A. Linan-rico, S. Soghomonyan, E. Whitaker et al., Enteric glial cells: A new frontier in neurogastroenterology and clinical target for inflammatory bowel diseases, Inflamm. Bowel Dis, vol.22, pp.433-449, 2016.

S. Langness, M. Kojima, R. Coimbra, B. P. Eliceiri, and T. W. Costantini, Enteric glia cells are critical to limiting the intestinal inflammatory response after injury, Am. J. Physiol. Gastrointest. Liver Physiol, vol.312, pp.274-282, 2017.

B. D. Gulbransen, ;. Enteric-glia, K. Bach-ngohou, M. M. Mahe, P. Aubert et al., Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2, Colloquim Ser. Neurogl. Biol. Med. Physiol. Dis, vol.1, pp.2533-2544, 2010.

B. D. Gulbransen and K. A. Sharkey, Novel functional roles for enteric glia in the gastrointestinal tract, Nat. Rev. Gastroenterol. Hepatol, vol.9, pp.625-632, 2012.

B. Espina, P. Otero, M. C. Louzao, A. Alfonso, and L. M. Botana, 13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: Human intestinal permeability modelling, Toxicology, vol.287, pp.69-75, 2011.

A. Ehlers, J. Scholz, A. These, S. Hessel, A. Preiss-weigert et al., Analysis of the passage of the marine biotoxin okadaic acid through an in vitro human gut barrier, Toxicology, vol.279, pp.196-202, 2011.

M. C. Louzao, D. A. Fernandez, P. Abal, M. Fraga, N. Vilarino et al., Diarrhetic effect of okadaic acid could be related with its neuronal action: Changes in neuropeptide Y, Toxicol. Lett, vol.237, pp.151-160, 2015.

W. Boesmans, C. Cirillo, V. Van-den-abbeel, C. Van-den-haute, I. Depoortere et al., Vanden Berghe, P. Neurotransmitters involved in fast excitatory neurotransmission directly activate enteric glial cells, Neurogastroenterol. Motil, vol.25, pp.151-160, 2013.

L. Berre-scoul, C. Chevalier, J. Oleynikova, E. Cossais, F. Talon et al., A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development, J. Physiol, vol.595, pp.583-598, 2017.

B. Espina, M. C. Louzao, I. R. Ares, E. Cagide, M. R. Vieytes et al., Cytoskeletal toxicity of pectenotoxins in hepatic cells, Br. J. Pharmol, vol.155, pp.934-944, 2008.

N. Vilarino, Marine toxins and the cytoskeleton: Azaspiracids, FEBS J, vol.275, pp.6075-6081, 2008.

G. Diogène, V. Fessard, A. Dubreuil, and S. Puisseux-dao, Comparative studies of the actin cytoskeleton response to Maitotoxin and Okadaic Acid, Toxicol. In Vitro, vol.9, pp.1-10, 1995.

I. Valverde, J. Lago, J. M. Vieites, and A. G. Cabado, In vitro approaches to evaluate palytoxin-induced toxicity and cell death in intestinal cells, J. Appl. Toxicol, vol.28, pp.294-302, 2008.

G. P. Rossini and P. Hess, Phycotoxins: Chemistry, mechanisms of action and shellfish poisoning, Mol. Clin. Environ. Toxicol, vol.100, pp.65-122, 2010.

N. Vilarino, K. C. Nicolaou, M. O. Frederick, E. Cagide, C. Alfonso et al., Cell Growth Inhibition and Actin Cytoskeleton Disorganization Induced by Azaspiracid-1 Structure-Activity Studies. Chem. Res. Toxicol, vol.19, pp.1456-1466, 2006.

L. M. Botana, A. Alfonso, C. Vale, N. Vilariño, J. Rubiolo et al., The mechanistic complexities of phycotoxins: Toxicology of azaspiracids and yessotoxins, Adv. Mol. Toxicol, vol.8, pp.1-33, 2014.

Y. Roman, A. Alfonso, M. C. Louzao, L. A. De-la-rosa, F. Leira et al., Azaspiracid-1, a potent, nonapoptotic new phycotoxin with several cell targets, Cell. Signal, vol.14, pp.703-716, 2002.

, Mar. Drugs, vol.17, pp.429-450, 2019.

R. Munday, M. A. Quilliam, P. Leblanc, N. Lewis, P. Gallant et al., Investigations into the toxicology of spirolides, a group of marine phycotoxins, Toxins, vol.4, pp.1-14, 2012.

I. R. Ares, M. C. Louzao, B. Espina, M. R. Vieytes, C. O. Miles et al., Lactone ring of pectenotoxins: A key factor for their activity on cytoskeletal dynamics, Cell. Physiol. Biochem, vol.19, pp.283-292, 2007.

V. Boyen and G. B. , Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia, Gut, vol.53, pp.222-228, 2004.

B. Rolland, G. Le-prince, C. Fages, J. Nunez, and M. Tardy, GFAP turnover during astroglial proliferation and differentiation, Brain Res. Dev. Brain Res, vol.56, pp.144-149, 1990.

L. Moody, G. Barrett-wilt, M. Sussman, and A. Messing, Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease, J. Biol. Chem, vol.292, pp.5814-5824, 2017.

S. Brahmachari, Y. K. Fung, and K. Pahan, Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide, J. Neurosci, vol.18, pp.4930-4939, 2006.

C. Rosenbaum, M. A. Schick, J. Wollborn, A. Heider, C. J. Scholz et al., Activation of myenteric glia during acute inflammation in vitro and in vivo, PLoS ONE, vol.11, 2016.

A. Franchini, D. Malagoli, and E. Ottaviani, Targets and Effects of Yessotoxin, Okadaic Acid and Palytoxin: A Differential Review, Mar. Drugs, vol.8, pp.658-677, 2010.

Y. Sonoda, T. Kasahara, Y. Yamaguchi, K. Kuno, K. Matsushima et al., Stimulation of interleukin-8 production by okadaic acid and vanadate in a human promyelocyte cell line, an HL-60 subline. Possible role of mitogen-activated protein kinase on the okadaic acid-induced NF-kappaB activation, J. Biol. Chem, vol.272, pp.15366-15372, 1997.

P. Rieckmann, C. Thévenin, and J. H. Kehrl, Okadaic acid is a potent inducer of AP-1, NF-kappa B, and tumor necrosis factor-alpha in human B lymphocytes, Biochem. Biophys. Res. Commun, vol.187, pp.51-57, 1992.

S. C. Gupta, C. Sundaram, S. Reuter, and B. B. Aggarwal, Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy, Biochim. Biophys. Acta, vol.1799, pp.775-787, 2010.

B. G. Nezami and S. Srinivasan, Enteric nervous system in the small intestine: Pathophysiology and clinical implications, Curr. Gastroenterol. Rep, vol.12, pp.358-365, 2010.

M. O. Kim, D. O. Moon, M. S. Heo, J. D. Lee, J. H. Jung et al., Pectenotoxin-2 abolishes constitutively activated NF-?B, leading to suppression of NF-?B related gene products and potentiation of apoptosis, Cancer Lett, vol.271, pp.25-33, 2008.

G. Esposito, E. Capoccia, F. Turco, I. Palumbo, J. Lu et al., Palmitoylethanolamide improves colon inflammation through an enteric glia/toll like receptor 4-dependent PPAR-alpha activation, Gut, vol.63, pp.1300-1312, 2014.

C. Cirillo, G. Sarnelli, F. Turco, A. Mango, M. Grosso et al., Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production, Neurogastroenterol. Motil, vol.23, pp.372-382, 2011.

V. Grubisic and B. D. Gulbransen, Enteric glia: The most alimentary of all glia, J. Physiol, vol.595, pp.557-570, 2017.

C. Cirillo, G. Sarnelli, G. Esposito, F. Turco, L. Steardo et al., S100B protein in the gut: The evidence for enteroglial-sustained intestinal inflammation, World J. Gastroenterol, vol.17, pp.1261-1266, 2011.

R. Donato, Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type, Biochim. Et Biophys. Acta, vol.1450, pp.191-231, 1999.

K. J. Frizzo, F. Tramontina, E. Bortoli, C. Gottfried, R. B. Leal et al., S100B-mediated inhibition of phosphorylation of GFAP is prevented by TRTK-12, Neurochem. Res, vol.29, pp.735-740, 2004.

R. Donato, G. Sorci, F. Riuzzi, C. Arcuri, R. Bianchi et al., S100B's double life: Intracellular regulator and extracellular signal, Biochim. Biophys. Acta, vol.1793, pp.1008-1022, 2009.

A. K. Chow and B. D. Gulbransen, Potential roles of enteric glia in bridging neuroimmune communication in the gut, Am. J. Physiol. Gastrointest. Liver Physiol, vol.312, pp.145-152, 2017.

, Mar. Drugs, vol.17, pp.429-451, 2019.

W. Xiao, W. Wang, W. Chen, L. Sun, X. Li et al., GDNF is involved in the barrier-inducing effect of enteric glial cells on intestinal epithelial cells under acute ischemia reperfusion stimulation, Mol. Neurobiol, vol.50, pp.274-289, 2014.

W. D. Xiao, W. Chen, L. H. Sun, W. S. Wang, S. W. Zhou et al., The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation, Mol. Cell. Neurosci, vol.46, pp.527-534, 2011.

H. Razafimanjato, N. Garmy, X. J. Guo, K. Varini, C. Di-scala et al., The food-associated fungal neurotoxin ochratoxin A inhibits the absorption of glutamate by astrocytes through a decrease in cell surface expression of the excitatory amino-acid transporters GLAST and GLT-1, Neurotoxicology, vol.31, pp.475-484, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00625231

J. Tian, S. F. Kim, L. Hester, and S. H. Snyder, S-nitrosylation/activation of COX-2 mediates NMDA neurotoxicity, vol.105, pp.10537-10540, 2008.

M. Khan, B. Sekhon, S. Giri, M. Jatana, A. G. Gilg et al., Singh, I. S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke, J. Cereb. Blood Flow Metab, vol.25, pp.177-192, 2005.

A. Franchini, E. Marchesini, R. Poletti, and E. Ottaviani, Acute toxic effect of the algal yessotoxin on Purkinje cells from the cerebellum of Swiss CD1 mice, Toxicon, vol.43, pp.347-352, 2004.

D. Y. Shin, G. Y. Kim, N. D. Kim, J. H. Jung, S. K. Kim et al., Induction of apoptosis by pectenotoxin-2 is mediated with the induction of DR4/DR5, Egr-1 and NAG-1, activation of caspases and modulation of the Bcl-2 family in 53-deficient Hep3B hepatocellular carcinoma cells, Oncol. Rep, vol.19, pp.517-526, 2008.

F. Leira, C. Alvarez, J. M. Vieites, M. R. Vieytes, and L. M. Botana, Characterization of distinct apoptotic changes induced by okadaic acid and yessotoxin in the BE(2)-M17 neuroblastoma cell line, Toxicol. In Vitro, vol.16, pp.23-31, 2002.

C. Malaguti, P. Ciminiello, E. Fattorusso, and G. P. Rossini, Caspase activation and death induced by yessotoxin in HeLa cells, Toxicol. In Vitro, vol.16, pp.357-363, 2002.

G. P. Rossini, N. Sgarbi, and C. Malaguti, The toxic responses induced by okadaic acid involve processing of multiple caspase isoformsinvolve caspase, Toxicon, vol.39, pp.763-770, 2001.

I. Kitazumi, Y. Maseki, Y. Nomura, A. Shimanuki, Y. Sugita et al., Okadaic acid induces DNA fragmentation via caspase-3-dependent and caspase-3-independent pathways in Chinese hamster ovary (CHO)-K1 cells, FEBS J, vol.277, pp.404-412, 2010.

Z. Cao, K. T. Lepage, M. O. Frederick, K. C. Nicolaou, and T. F. Murray, Involvement of caspase activation in azaspiracid-induced neurotoxicity in neocortical neurons, Toxicol. Sci, vol.114, pp.323-334, 2010.

N. Vilarino, K. C. Nicolaou, M. O. Frederick, M. R. Vieytes, and L. M. Botana, Irreversible cytoskeletal disarrangement is independent of caspase activation during in vitro azaspiracid toxicity in human neuroblastoma cells, Biochem. Pharmol, vol.74, pp.327-335, 2007.

I. K. Shin, Y. T. Ahn, Y. Kim, J. M. Kim, and W. G. An, Actin disruption agents induce phosphorylation of histone H2AX in human breast adenocarcinoma MCF-7 cells, Oncol. Rep, vol.25, pp.1313-1319, 2011.

V. Valdiglesias, J. Méndez, E. Pásaro, E. Cemelic, D. Anderson et al., Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells, Mutat. Res. Fundam. Mol. Mech. Mutagenesis, vol.689, pp.74-79, 2010.

M. S. Korsnes and R. Korsnes, Mitotic catastrophe in BC3H1 CELLS following yessotoxin exposure. Front, Cell Dev. Biol, vol.5, 2017.

D. Moon, M. Kim, S. Kang, K. Lee, M. Heo et al., Induction of G2/M arrest, endoreduplication, and apoptosis by actin depolymerization agent pextenotoxin-2 in human leukemia cells, involving activation of ERK and JNK, Biochem. Pharmacol, vol.76, pp.312-321, 2008.

D. O. Moon, M. O. Kim, T. J. Nam, S. K. Kim, Y. H. Choi et al., Pectenotoxin-2 induces G2/M phase cell cycle arrest in human breast cancer cells via ATM and Chk1/2-mediated phosphorylation of cdc25C, Oncol. Rep, vol.24, pp.271-276, 2010.

M. Hori, F. Yazama, Y. Matsuura, R. Yoshimoto, T. Kaneda et al., Inhibition of actin polymerization by marine toxin pectenotoxin-2, J. Vet. Med. Sci, vol.80, pp.225-234, 2018.

, Mar. Drugs, vol.17, pp.429-452, 2019.

G. Y. Kim, W. J. Kim, and Y. H. Choi, Pectenotoxin-2 from marine sponges: A potential anti-cancer agent-A review, Mar. Drugs, vol.9, pp.2176-2187, 2011.

A. Martin-lopez, J. J. Gallardo-rodriguez, A. Sanchez-miron, F. Garcia-camacho, and E. Molina-grima, Cytotoxicity of yessotoxin and okadaic acid in mouse T lymphocyte cell line EL-4, Toxicon, vol.60, pp.1049-1056, 2012.

J. Edelstein and P. Rockwell, Okadaic acid induces Akt hyperphosphorylation and an oxidative stress-mediated cell death in serum starved SK-N-SH human neuroblastoma cells that are augmented by rapamycin, Neurosci. Lett, vol.531, pp.74-79, 2012.

K. N. Schmidt, E. B. Traenckner, B. Meier, and P. A. Baeuerle, Induction of oxidative stress by okadaic acid is required for activation of transcription factor NF-?B, J. Biol. Chem, vol.270, pp.27136-27142, 1995.

J. Ravindran, N. Gupta, M. Agrawal, A. S. Bala-bhaskar, and P. V. Lakshmana-rao, Modulation of ROS/MAPK signaling pathways by okadaic acid leads to cell death via, mitochondrial mediated caspase-dependent mechanism, Apoptosis, vol.16, pp.145-161, 2011.

C. Vale, K. C. Nicolaou, M. O. Frederick, M. R. Vieytes, and L. M. Botana, Cell volume decrease as a link between azaspiracid-induced cytotoxicity and c-Jun-N-terminal kinase activation in cultured neurons, Toxicol. Sci, vol.113, pp.158-168, 2010.

L. V. Hjornevik, A. K. Froyset, T. A. Gronset, K. Rungruangsak-torrissen, and K. E. Fladmark, Algal toxin azaspiracid-1 induces early neuronal differentiation and alters peripherin isoform stoichiometry, Mar. Drugs, vol.13, pp.7390-7402, 2015.

M. Meir, S. Flemming, N. Burkard, L. Bergauer, M. Metzger et al., Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro, Am. J. Physiol. Gastrointest. Liver Physiol, vol.309, pp.613-624, 2015.

V. Boyen, G. B. Steinkamp, M. Geerling, I. Reinshagen, M. Schafer et al., Proinflammatory cytokines induce neurotrophic factor expression in enteric glia: A key to the regulation of epithelial apoptosis in Crohn's disease, Inflamm. Bowel Dis, vol.12, pp.346-354, 2006.

M. Steinkamp, H. Gundel, N. Schulte, U. Spaniol, C. Pflueger et al., GDNF protects enteric glia from apoptosis: Evidence for an autocrine loop, BMC Gastroenterol, vol.12, issue.6, 2012.

M. Steinkamp, N. Schulte, U. Spaniol, C. Pflueger, C. Hartmann et al., Brain derived neurotrophic factor inhibits apoptosis in enteric glia during gut inflammation, Med. Sci. Monit, vol.18, pp.117-122, 2012.

M. Neunlist, M. Rolli-derkinderen, R. Latorre, L. Van-landeghem, E. Coron et al., Enteric glial cells: Recent developments and future directions, Gastroenterology, vol.147, pp.1230-1237, 2014.

B. B. Yoo and S. K. Mazmanian, The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut, vol.46, pp.910-926, 2017.

M. Pelin, S. Sosa, S. Pacor, A. Tubaro, and C. Florio, The marine toxin palytoxin induces necrotic death in HaCaT cells through a rapid mitochondrial damage, Toxicol. Lett, vol.229, pp.440-450, 2014.

M. Pelin, C. Ponti, S. Sosa, D. Gibellini, C. Florio et al., Oxidative stress induced by palytoxin in human keratinocytes is mediated by a H+-dependent mitochondrial pathway, Toxicol. Appl. Pharmol, vol.266, pp.1-8, 2013.

D. Z. Wang, Neurotoxins from marine dinoflagellates: A brief review, Mar. Drugs, vol.6, pp.349-371, 2008.

N. M. Delvalle, D. E. Fried, G. Rivera-lopez, L. Gaudette, and B. D. Gulbransen, Cholinergic activation of enteric glia is a physiological mechanism that contributes to the regulation of gastrointestinal motility, Gastrointest. Liver Physiol, vol.315, pp.473-483, 2018.

C. B. Wandscheer, N. Vilarino, B. Espina, M. C. Louzao, and L. M. Botana, Human muscarinic acetylcholine receptors are a target of the marine toxin 13-desmethyl C spirolide, Chem. Res. Toxicol, vol.23, pp.1753-1761, 2010.

R. Araoz, G. Ouanounou, B. I. Iorga, A. Goudet, D. Alili et al., The neurotoxic effect of 13,19-didesmethyl and 13-desmethyl spirolide C phycotoxins is mainly mediated by nicotinic rather than muscarinic acetylcholine receptors, Toxicol. Sci, vol.147, pp.156-167, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165573

J. Alexander, D. Benford, A. Boobis, S. Ceccatelli, J. P. Cravedi et al., Marine biotoxins in shellfish-Summary on regulated marine biotoxins, Scientific opinion of the panel on contaminants in the food chain, EFSA J, vol.1306, pp.1-23, 2009.

P. J. Ferron, K. Hogeveen, G. De-sousa, R. Rahmani, E. Dubreil et al., Modulation of CYP3A4 activity alters the cytotoxicity of lipophilic phycotoxins in human hepatic HepaRG cells, Toxicol. In Vitro, vol.33, pp.136-146, 2016.
URL : https://hal.archives-ouvertes.fr/anses-01340742

A. Huguet, A. Hatton, R. Villot, H. Quenault, Y. Blanchard et al., Modulation of chromatin remodelling induced by the freshwater cyanotoxin cylindrospermopsin in human intestinal Caco-2 cells, PLoS ONE, vol.9, p.99121, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01025934

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI