L. Adams, D. Lyon, and P. Alvarez, Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions, Water Research, vol.40, issue.19, pp.3527-3532, 2006.
DOI : 10.1016/j.watres.2006.08.004

S. Anjilvel and B. Asgharian, A Multiple-Path Model of Particle Deposition in the Rat Lung, Fundamental and Applied Toxicology, vol.28, issue.1, pp.41-50, 1995.
DOI : 10.1006/faat.1995.1144

D. Antonio, C. Cascio, and Z. Jaksic, Assessing silver nanoparticles behaviour in artificial seawater by mean of AF4 and spICP-MS, Marine Environmental Research, vol.111, pp.162-169, 2015.
DOI : 10.1016/j.marenvres.2015.05.006

C. Asbach, H. Kaminski, and H. Fissan, Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements, Journal of Nanoparticle Research, vol.22, issue.1, pp.1593-1609, 2009.
DOI : 10.1080/02786828608959112

R. Baan, Working Group, Inhalation Toxicology, vol.288, issue.1, pp.213-228, 2007.
DOI : 10.1016/S0021-9673(01)93711-2

R. Baan and Y. Grosse, Man-made mineral (vitreous) fibres: evaluations of cancer hazards by the IARC Monographs Programme, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.553, issue.1-2, 2004.
DOI : 10.1016/j.mrfmmm.2004.06.019

G. Batley, J. Kirby, and M. Mclaughlin, Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments, Accounts of Chemical Research, vol.46, issue.3, pp.854-862, 2013.
DOI : 10.1021/ar2003368

H. Becker, F. Herzberg, A. Schulte, and M. Kolossa-gehring, The carcinogenic potential of nanomaterials, their release from products and options for regulating them, International Journal of Hygiene and Environmental Health, vol.214, issue.3, pp.231-238, 2011.
DOI : 10.1016/j.ijheh.2010.11.004

C. Bekker, D. Brouwer, E. Tielemans, and A. Pronk, Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure, Ann Occup Hyg, vol.57, issue.3, pp.314-327, 2013.

D. Bernstein, R. Sintes, J. Ersboell, B. Kunert, and J. , Biopersistence of synthetic mineral fibers as a predictor of chronic intraperitoneal injection tumor response in rats, Inhal Toxicol, vol.13, issue.10, pp.851-875, 2001.

L. Böhmert, M. Girod, and U. Hansen, Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells, Nanotoxicology, vol.43, issue.11, pp.631-642, 2014.
DOI : 10.3109/17435390.2010.536615

P. Borm, D. Robbins, and S. Haubold, The potential risks of nanomaterials: a review carried out for ECETOC, Part Fibre Toxicol, vol.3, issue.11, pp.1743-8977, 2006.

J. Bott, A. Störmer, and R. Franz, Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs, Food Additives & Contaminants: Part A, vol.47, issue.10, pp.1769-1782, 2014.
DOI : 10.1016/j.polymertesting.2011.09.011

J. Bott, A. Störmer, and R. Franz, A comprehensive study into the migration potential of nano silver particles from food contact polyolefins chemistry of food, food supplements, and food contact materials: from production to plate, pp.51-70, 2014.

J. Bott, A. Störmer, and R. Franz, A model study into the migration potential of nanoparticles from plastics nanocomposites for food contact, Food Packaging and Shelf Life, vol.2, issue.2, pp.73-80, 2014.
DOI : 10.1016/j.fpsl.2014.08.001

T. Buchner, D. Drescher, and H. Traub, Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping, Analytical and Bioanalytical Chemistry, vol.4, issue.14, pp.7003-7014, 2014.
DOI : 10.3762/bjnano.4.94

T. Buchner, D. Drescher, and V. Merk, Biomolecular environment , quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes Ink-jet printing of graphene for flexible electronics: an environmentally-friendly approach, Analyst Solid State Commun, vol.141, issue.224, pp.5096-510653, 2015.

F. Cassee, H. Muijser, and E. Duistermaat, Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model, Archives of Toxicology, vol.76, issue.5-6, pp.5-6277, 2002.
DOI : 10.1007/s00204-002-0344-8

J. Cheng, L. Liu, and K. Ma, Hybrid nanomaterial of ??-Co(OH) 2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors, Journal of Colloid and Interface Science, vol.486, pp.344-350, 2017.
DOI : 10.1016/j.jcis.2016.09.064

J. Choi, H. Kim, and P. Kim, Toxicity of Zinc Oxide Nanoparticles in Rats Treated by Two Different Routes: Single Intravenous Injection and Single Oral Administration, Journal of Toxicology and Environmental Health, Part A, vol.7, issue.4, pp.226-243, 2015.
DOI : 10.2217/nnm.12.205

A. Collins, B. Annangi, and L. Rubio, High throughput toxicity screening and intracellular detection of nanomaterials, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol.8, issue.Suppl 1, 2017.
DOI : 10.3109/17435390.2013.796534

J. Cowie, E. Bilek, T. Wegner, and J. Shatkin, Market projections of cellulose nanomaterial-enabled products?Part 2: volume estimates, Tappi J, vol.13, issue.6, pp.57-69, 2014.

O. Creutzenberg, W. Wistar, and . Rats, REPORT-3-month nose-only inhalation toxicity study of Fraunhofer ITEM Creutzenberg O (2014) FINAL REPORT-3-month nose-only inhalation toxicity study of synthetic amorphous silica (NM-200) in Wistar WU rats Advanced computational modeling for in vitro nanomaterial dosimetry, Fraunhofer ITEM DeLoid GM Part Fibre Toxicol, 2013.

P. Demokritou, S. Gass, and G. Pyrgiotakis, inhalation exposures, Nanotoxicology, vol.21, issue.2, pp.1338-1350, 2013.
DOI : 10.1021/nn3010087

Y. Ding, T. Kuhlbusch, and M. Van-tongeren, Airborne engineered nanomaterials in the workplace???a review of release and worker exposure during nanomaterial production and handling processes, Journal of Hazardous Materials, vol.322, pp.17-28, 2017.
DOI : 10.1016/j.jhazmat.2016.04.075

S. Doak, S. Griffiths, and B. Manshian, Confounding experimental considerations in nanogenotoxicology, Mutagenesis, vol.24, issue.4, pp.285-293, 2009.
DOI : 10.1093/mutage/gep010

URL : https://academic.oup.com/mutage/article-pdf/24/4/285/3776257/gep010.pdf

K. Donaldson and A. Seaton, A short history of the toxicology of inhaled particles, Particle and Fibre Toxicology, vol.9, issue.1, pp.1743-8977, 2012.
DOI : 10.1016/j.ajpath.2011.02.040

K. Donaldson and C. Tran, An introduction to the short-term toxicology of respirable industrial fibres, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.553, issue.1-2, pp.5-9, 2004.
DOI : 10.1016/j.mrfmmm.2004.06.011

K. Donaldson, F. Murphy, R. Duffin, and C. Poland, Asbestos, carbon nanotubes and the pleural mesothelium: a review and the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma, Particle and Fibre Toxicology, vol.7, issue.1, pp.1743-8977, 2010.
DOI : 10.1186/1743-8977-7-5

C. Dostert, V. Petrilli, R. Van-bruggen, C. Steele, B. Mossman et al., Innate Immune Activation Through Nalp3 Inflammasome Sensing of Asbestos and Silica, Science, vol.9, issue.2, pp.674-677, 2008.
DOI : 10.1186/ar2143

D. Drescher, C. Giesen, H. Traub, U. Panne, J. Kneipp et al., Quantitative Imaging of Gold and Silver Nanoparticles in Single Eukaryotic Cells by Laser Ablation ICP-MS, Analytical Chemistry, vol.84, issue.22, pp.9684-9688, 2012.
DOI : 10.1021/ac302639c

D. Drescher, I. Zeise, and H. Traub, Nanoparticle Biointeractions Using BrightSilica, Advanced Functional Materials, vol.177, issue.24, pp.3765-3775, 2014.
DOI : 10.1016/j.jsb.2011.12.023

G. Drummond, R. Bevan, and P. Harrison, A comparison of the results from intra-pleural and intra-peritoneal studies with those from inhalation and intratracheal tests for the assessment of pulmonary responses to inhalable dusts and fibres, Regulatory Toxicology and Pharmacology, vol.81, 2016.
DOI : 10.1016/j.yrtph.2016.07.019

S. Evans, M. Clift, and N. Singh, systems towards the study of nanoparticle (secondary) genotoxicity, Mutagenesis, vol.32, issue.1, pp.233-241, 2017.
DOI : 10.1093/mutage/gew054

M. Eydner, D. Schaudien, and O. Creutzenberg, Impacts after inhalation of nano- and fine-sized titanium dioxide particles: morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index, Inhalation Toxicology, vol.17, issue.9, pp.557-569, 2012.
DOI : 10.1080/009841098159169

L. Fewtrell, B. Majuru, and P. Hunter, A re-assessment of the safety of silver in household water treatment: rapid systematic review of mammalian in vivo genotoxicity studies, Environmental Health, vol.14, issue.3, pp.12940-12957, 2017.
DOI : 10.3390/ijms14022449

L. Garduno-balderas, I. Urrutia-ortega, E. Medina-reyes, and Y. Chirino, Difficulties in establishing regulations for engineered nanomaterials and considerations for policy makers: avoiding an unbalance between benefits and risks, Journal of Applied Toxicology, vol.502, issue.10, pp.1073-10853180, 2015.
DOI : 10.1016/j.scitotenv.2014.08.077

T. Gebel, Small difference in carcinogenic potency between GBP nanomaterials and GBP micromaterials, Archives of Toxicology, vol.48, issue.Suppl 1, pp.995-1007, 2012.
DOI : 10.1097/01.jom.0000215385.71548.b0

T. Gebel, R. Marchan, and J. Hengstler, The nanotoxicology revolution, Archives of Toxicology, vol.85, issue.12, pp.2057-2062, 2013.
DOI : 10.1007/s00204-011-0654-9

T. Gebel, H. Foth, and G. Damm, Manufactured nanomaterials: categorization and approaches to hazard assessment, Archives of Toxicology, vol.30, issue.Suppl 1, pp.2191-2211, 2014.
DOI : 10.1016/j.biomaterials.2008.12.038

S. George, H. Gardner, and E. Seng, Differential effect of solar light in increasing the toxicity of silver and titanium dioxide nanoparticles to a fish cell line and zebrafish embryos Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats, Environ Sci Technol Part Fibre Toxicol, vol.48, issue.11, pp.6374-638230, 2014.

C. Giannakou, M. Park, W. De-jong, H. Van-loveren, R. Vandebriel et al., A comparison of immunotoxic effects of nanomedicinal products with regulatory immunotoxicity testing requirements, International Journal of Nanomedicine, 2016.
DOI : 10.2147/IJN.S102385

J. Godnjavec, B. Znoj, N. Veronovski, and P. Venturini, Polyhedral oligomeric silsesquioxanes as titanium dioxide surface modifiers for transparent acrylic UV blocking hybrid coating, Progress in Organic Coatings, vol.74, issue.4, pp.654-659, 2012.
DOI : 10.1016/j.porgcoat.2011.09.032

D. Goehler and M. Stintz, Granulometric characterization of airborne particulate release during spray application of nanoparticle-doped coatings, Journal of Nanoparticle Research, vol.11, issue.L275, 2014.
DOI : 10.1016/0021-8502(80)90030-0

L. Gonzalez and M. Kirsch-volders, Biomonitoring of genotoxic effects for human exposure to nanomaterials: The challenge ahead, Mutation Research/Reviews in Mutation Research, vol.768, pp.14-26, 2016.
DOI : 10.1016/j.mrrev.2016.03.002

U. Graham, M. Tseng, and J. Jasinski, In???Vivo Processing of Ceria Nanoparticles inside Liver: Impact on Free-Radical Scavenging Activity and Oxidative Stress, ChemPlusChem, vol.41, issue.8, pp.1083-1088, 2014.
DOI : 10.1021/es062347t

Y. Grosse, D. Loomis, and K. Guyton, Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes, The Lancet Oncology, vol.15, issue.13, pp.1427-1428, 2014.
DOI : 10.1016/S1470-2045(14)71109-X

E. Guehrs, M. Schneider, and C. Günther, Quantification of silver nanoparticle uptake and distribution within individual human macrophages by FIB/SEM slice and view, Journal of Nanobiotechnology, vol.17, issue.5, 2017.
DOI : 10.1016/0146-664X(75)90012-X

M. Guldberg, A. De-meringo, O. Kamstrup, H. Furtak, and C. Rossiter, The Development of Glass and Stone Wool Compositions with Increased Biosolubility, Regulatory Toxicology and Pharmacology, vol.32, issue.2, pp.184-189, 1418.
DOI : 10.1006/rtph.2000.1418

B. Gulson, M. Mccall, D. Bowman, and T. Pinheiro, A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies, Archives of Toxicology, vol.13, issue.5, 1909.
DOI : 10.1117/1.3041492

N. Gupta, A. Fischer, S. George, and L. Frewer, Expert views on societal responses to different applications of nanotechnology: a comparative analysis of experts in countries with different economic and regulatory environments, Journal of Nanoparticle Research, vol.253, issue.5019, pp.11051-11064, 2013.
DOI : 10.1126/science.253.5019.518

K. Haas, Industrial relevant production processes for nanomaterials and nanostructures Safety aspects of engineered nanomaterials, pp.30-66, 2013.

W. Hallman and M. Nucci, Consumer perceptions of nanomaterials in functional foods, 2015.
DOI : 10.1080/13698570701306823

M. Hanus and A. Harris, Nanotechnology innovations for the construction industry, Progress in Materials Science, vol.58, issue.7, pp.1056-1102, 2013.
DOI : 10.1016/j.pmatsci.2013.04.001

A. Herrmann, S. Techritz, and N. Jakubowski, A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS, The Analyst, vol.141, issue.10, pp.1703-1710, 2017.
DOI : 10.1039/C5AN02347E

H. Heusinkveld, T. Wahle, and A. Campbell, Neurodegenerative and neurological disorders by small inhaled particles, NeuroToxicology, vol.56, pp.94-106, 2016.
DOI : 10.1016/j.neuro.2016.07.007

I. Hincapie, A. Caballero-guzman, D. Hiltbrunner, and B. Nowack, Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland, Waste Management, vol.43, pp.398-406, 2015.
DOI : 10.1016/j.wasman.2015.07.004

I. Hsiao, F. Bierkandt, and P. Reichardt, Quantification and visualization of cellular uptake of TiO2 and Ag nanoparticles: comparison of different ICP-MS techniques, Journal of Nanobiotechnology, vol.62, issue.1, p.50, 2016.
DOI : 10.1021/jf5011885

K. Hund-rinke and K. Schlich, The potential benefits and limitations of different test procedures to determine the effects of Ag nanomaterials and AgNO3 on microbial nitrogen transformation in soil, Environmental Sciences Europe, vol.24, issue.12, p.28, 2014.
DOI : 10.1128/AEM.02218-06

K. Hund-rinke, K. Schlich, and T. Klawonn, Influence of application techniques on the ecotoxicological effects of nanomaterials in soil, Environmental Sciences Europe, vol.24, issue.1, pp.302190-4715, 2012.
DOI : 10.1186/2190-4715-24-5

K. Hund-rinke, A. Baun, and D. Cupi, Regulatory ecotoxicity testing of nanomaterials ??? proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles, Nanotoxicology, vol.10, issue.10, pp.1442-1447, 2016.
DOI : 10.1007/s00204-016-1734-7

H. Jungnickel, P. Laux, and A. Luch, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analysis of Toxicological Effects on Single Cell Level, Toxics, vol.1, issue.1, 2016.
DOI : 10.1186/1559-4106-8-3

N. Kapp, W. Kreyling, and H. Schulz, Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs, Microscopy Research and Technique, vol.40, issue.5, pp.298-305, 2004.
DOI : 10.1165/ajrcmb.24.2.4081

H. Karlsson, D. Bucchianico, S. Collins, A. Dusinska, and M. , Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity?, Environmental and Molecular Mutagenesis, vol.304, issue.2, pp.82-96, 2015.
DOI : 10.1016/j.tox.2012.12.015

A. Kermanizadeh, D. Balharry, H. Wallin, S. Loft, and P. Moller, Nanomaterial translocation???the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs???a review, Critical Reviews in Toxicology, vol.4, issue.10, pp.837-872, 2015.
DOI : 10.1002/smll.201100001

D. Kosynkin, A. Higginbotham, and A. Sinitskii, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons Evaluation of quantitative exposure assessment method for nanomaterials in mixed dust environments: application in tire manufacturing facilities, Nature Ann Occup Hyg, vol.458, issue.599, pp.872-8761122, 2009.

W. Kreyling, M. Semmler, and F. Erbe, TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW, Journal of Toxicology and Environmental Health, Part A, vol.38, issue.20, pp.1513-1530, 2002.
DOI : 10.1016/S0002-8703(99)70002-5

H. Krug, Nanosafety Research-Are We on the Right Track?, Angewandte Chemie International Edition, vol.46, 2014.
DOI : 10.1021/ar300022h

E. Kuempel, M. Jaurand, and P. Moller, Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans, Critical Reviews in Toxicology, vol.8, issue.1, pp.1-58, 2017.
DOI : 10.1021/nl071303v

R. Landsiedel, E. Fabian, and L. Ma-hock, Toxico-/biokinetics of nanomaterials, Archives of Toxicology, vol.228, issue.Suppl. 1, pp.1021-1060, 2012.
DOI : 10.1016/j.taap.2007.12.022

R. Landsiedel, L. Ma-hock, and T. Hofmann, Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials, Particle and Fibre Toxicology, vol.11, issue.1, pp.1743-8977, 2014.
DOI : 10.2307/2528490

R. Lankone, K. Challis, and Y. Bi, Methodology for quantifying engineered nanomaterial release from diverse product matrices under outdoor weathering conditions and implications for life cycle assessment, Environmental Science: Nano, vol.166, issue.212, pp.1784-1797, 2017.
DOI : 10.1016/j.cis.2011.05.008

P. Laux, C. Riebeling, and A. Booth, Biokinetics of nanomaterials: The role of biopersistence, NanoImpact, vol.6, pp.69-80, 2017.
DOI : 10.1016/j.impact.2017.03.003

P. Laux, C. Riebeling, and A. Booth, Challenges in characterizing the environmental fate and effects of carbon nanotubes and inorganic nanomaterials in aquatic systems, Environmental Science: Nano, vol.49, issue.210, 2017.
DOI : 10.1021/acs.est.5b00997

J. Lee, S. Mahendra, and P. Alvarez, Nanomaterials in the Construction Industry: A Review of Their Applications and Environmental Health and Safety Considerations, ACS Nano, vol.4, issue.7, pp.3580-3590, 2010.
DOI : 10.1021/nn100866w

M. Lefevre, F. Green, and D. W. Laqueur, Frequency of black pigment in livers and spleens of coal workers, Human Pathology, vol.13, issue.12, pp.1121-1126, 1982.
DOI : 10.1016/S0046-8177(82)80250-5

D. Lichtenstein, J. Ebmeyer, and P. Knappe, Abstract, Biological Chemistry, vol.26, issue.11, pp.1255-1264, 2015.
DOI : 10.1021/tx400231u

Z. Magdolenova, A. Collins, A. Kumar, A. Dhawan, V. Stone et al., studies with engineered nanoparticles, Nanotoxicology, vol.7, issue.10, pp.233-278, 2014.
DOI : 10.1021/nl071303v

L. Ma-hock, A. Gamer, and R. Landsiedel, Generation and Characterization of Test Atmospheres with Nanomaterials, Inhalation Toxicology, vol.31, issue.2, pp.833-848, 2007.
DOI : 10.1016/0013-9351(83)90001-4

J. Maia, A. De-quiros, and R. Sendon, Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs, Food Additives & Contaminants: Part A, vol.105, issue.4, pp.715-7241156165, 2016.
DOI : 10.1080/02652030400009217

C. Marambio-jones and E. Hoek, A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment, Journal of Nanoparticle Research, vol.43, issue.5, pp.1531-1551, 2010.
DOI : 10.1016/S0008-6223(02)00246-4

W. Mckinney, C. B. Frazer, and D. , Computer controlled multi-walled carbon nanotube inhalation exposure system, Inhalation Toxicology, vol.113, issue.7, pp.1053-1061, 2009.
DOI : 10.1289/ehp.7339

B. Meuller, M. Messing, and D. Engberg, Review of Spark Discharge Generators for Production of Nanoparticle Aerosols, Aerosol Science and Technology, vol.46, issue.11, pp.1256-1270, 2012.
DOI : 10.1007/s11051-006-9127-0

D. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environment International, vol.77, pp.132-147, 2015.
DOI : 10.1016/j.envint.2015.01.013

URL : https://hal.archives-ouvertes.fr/cea-01344057

M. Moreno-horn and T. Gebel, Granular biodurable nanomaterials: No convincing evidence for systemic toxicity, Critical Reviews in Toxicology, vol.8, issue.10, pp.849-875, 2014.
DOI : 10.1371/journal.pone.0059378

L. Mueller, A. Herrmann, S. Techritz, U. Panne, and N. Jakubowski, Quantitative characterization of single cells by use of immunocytochemistry combined with multiplex LA-ICP-MS, Analytical and Bioanalytical Chemistry, vol.141, issue.14 Supplement, pp.3667-3676, 2017.
DOI : 10.1039/C6AN01878E

L. Mueller, H. Traub, and N. Jakubowski, Novel applications of lanthanoides as analytical or diagnostic tools in the life sciences by ICP-MS based techniques, pp.301-320, 2017.

F. Murphy, A. Schinwald, C. Poland, and K. Donaldson, The mechanism of pleural inflammation by long carbon nanotubes: interaction of long fibres with macrophages stimulates them to amplify pro-inflammatory responses in mesothelial cells, Particle and Fibre Toxicology, vol.9, issue.1, pp.1743-8977, 2012.
DOI : 10.3109/17435390903569639

H. Nagai, Y. Okazaki, and S. Chew, Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis, Proceedings of the National Academy of Sciences, vol.7, issue.7, pp.1330-1338, 2011.
DOI : 10.1186/1743-8977-7-5

D. Napierska, L. Thomassen, D. Lison, J. Martens, and P. Hoet, The nanosilica hazard: another variable entity, Particle and Fibre Toxicology, vol.7, issue.1, pp.391743-8977, 2010.
DOI : 10.1186/1743-8977-7-39

P. Neale, A. Jamting, B. Escher, H. J. Nguea, H. De-reydellet et al., A review of the detection, fate and effects of engineered nanomaterials in wastewater treatment plants A new in vitro cellular system for the analysis of mineral fiber biopersistence, Water Sci Technol Arch Toxicol, vol.68, issue.827, pp.435-443, 2008.

G. Noonan, A. Whelton, D. Carlander, and T. Duncan, Measurement Methods to Evaluate Engineered Nanomaterial Release from Food Contact Materials, Comprehensive Reviews in Food Science and Food Safety, vol.45, issue.Suppl), pp.679-692, 2014.
DOI : 10.1021/es104205a

G. Oberdörster, Nanotoxicology: in Vitro???in Vivo Dosimetry, Environmental Health Perspectives, vol.120, issue.1, pp.13-13, 2012.
DOI : 10.1289/ehp.1104320

G. Oberdörster, V. Castranova, B. Asgharian, and P. Sayre, Inhalation Exposure to Carbon Nanotubes (CNT) and Carbon Nanofibers (CNF): Methodology and Dosimetry, Journal of Toxicology and Environmental Health, Part B, vol.5, issue.3, pp.3-4121, 2015.
DOI : 10.1021/jp112324d

J. Park, W. Mitchel, and L. Grazulis, Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE), Advanced Materials, vol.92, issue.37, pp.4140-4145, 2010.
DOI : 10.1002/adma.201000756

R. Peters, E. Kramer, and A. Oomen, Digestion of Foods Containing Silica as a Food Additive, ACS Nano, vol.6, issue.3, pp.2441-2451, 2012.
DOI : 10.1021/nn204728k

R. Peters, P. Brandhoff, S. Weigel, H. Marvin, H. Bouwmeester et al., Inventory of nanotechnology applications in the agricultural, feed and food sector. European Food Safety Authority, EFSA supporting publication, vol.2014, p.621, 2014.

J. Petkovic, B. Zegura, and M. Stevanovic, nanoparticles in human hepatoma HepG2 cells, Nanotoxicology, vol.29, issue.1, pp.341-353, 2011.
DOI : 10.1385/1-59259-800-5:301

C. Poland, R. Duffin, and I. Kinloch, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, vol.67, issue.7, pp.423-428111, 2008.
DOI : 10.1016/j.mrfmmm.2004.06.011

D. Porter, A. Hubbs, and R. Mercer, Mouse pulmonary doseand time course-responses induced by exposure to multi-walled carbon nanotubes, Toxicology, vol.26923, pp.136-147, 2010.

S. Rebouillat and F. Pla, State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications, Journal of Biomaterials and Nanobiotechnology, vol.04, issue.02, pp.165-188, 2013.
DOI : 10.4236/jbnb.2013.42022

URL : https://hal.archives-ouvertes.fr/hal-00822967

R. Ricci, N. Leite, and N. Da-silva, Graphene oxide nanoribbons as nanomaterial for bone regeneration: Effects on cytotoxicity, gene expression and bactericidal effect, Materials Science and Engineering: C, vol.78, pp.341-348, 2017.
DOI : 10.1016/j.msec.2017.03.278

R. , J. Rittinghausen, S. Bellmann, B. Creutzenberg, and O. , Inventory of nanotechnology applications in the agricultural, feed and food sector Inventory of nanotechnology applications in the agricultural, feed and food sector European Food Safety Authority (EFSA), EFSA supporting publication 2014 Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs, Toxicology, vol.125, issue.303, pp.177-186, 2013.

S. Rittinghausen, A. Hackbarth, and O. Creutzenberg, The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats, Particle and Fibre Toxicology, vol.42, issue.Suppl 1, p.59, 2014.
DOI : 10.1177/0192623313501894

M. Roller and F. Pott, Lung Tumor Risk Estimates from Rat Studies with Not Specifically Toxic Granular Dusts, Annals of the New York Academy of Sciences, vol.7, issue.1, pp.266-280, 2006.
DOI : 10.1093/toxsci/55.1.24

B. Schäfer, J. Brocke, and A. Epp, State of the art in human risk assessment of silver compounds in consumer products: a conference report on silver and nanosilver held at the BfR in 2012, Archives of Toxicology, vol.4, issue.12, pp.2249-2262, 2013.
DOI : 10.1246/cl.1980.373

C. Scharlach, L. Muller, and S. Wagner, LA-ICP-MS Allows Quantitative Microscopy of Europium-Doped Iron Oxide Nanoparticles and is a Possible Alternative to Ambiguous Prussian Blue Iron Staining, Journal of Biomedical Nanotechnology, vol.12, issue.5, pp.1001-1010, 2016.
DOI : 10.1166/jbn.2016.2230

D. Schwotzer, H. Ernst, and D. Schaudien, Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats, Particle and Fibre Toxicology, vol.55, issue.Suppl 1, pp.12989-13006, 2017.
DOI : 10.1078/0940-2993-00350

M. Sharma, J. Nikota, S. Halappanavar, V. Castranova, B. Rothen-rutishauser et al., Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs), Archives of Toxicology, vol.208, issue.Suppl, pp.1605-1622, 2016.
DOI : 10.1084/jem.20110551

H. Shin, A. Stefaniak, N. Stojilovic, and G. Chase, nanofibres in artificial human lung fluids, Environmental Science: Nano, vol.29, issue.22, pp.251-261, 2015.
DOI : 10.1016/j.jeurceramsoc.2008.03.015

R. Shukla, A. Kumar, D. Gurbani, A. Pandey, S. Singh et al., nanoparticles induce oxidative DNA damage and apoptosis in human liver cells, Nanotoxicology, vol.6, issue.10, pp.48-60, 2013.
DOI : 10.1080/15287390903091764

V. Stone, H. Johnston, and R. Schins, systems for nanotoxicology: methodological considerations, Critical Reviews in Toxicology, vol.105, issue.1, pp.613-626, 2009.
DOI : 10.1073/pnas.0805411105

A. Störmer, J. Bott, D. Kemmer, and R. Franz, Critical review of the migration potential of nanoparticles in food contact plastics, Trends in Food Science & Technology, vol.63, pp.39-50, 2017.
DOI : 10.1016/j.tifs.2017.01.011

C. Szakal, L. Tsytsikova, D. Carlander, and T. Duncan, Measurement Methods for the Oral Uptake of Engineered Nanomaterials from Human Dietary Sources: Summary and Outlook, Comprehensive Reviews in Food Science and Food Safety, vol.84, issue.4, pp.669-678, 2014.
DOI : 10.1021/ac203233q

A. Tarantini, S. Huet, and G. Jarry, Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 1: Oral route, Environmental and Molecular Mutagenesis, vol.5, issue.2, pp.218-227, 2015.
DOI : 10.3109/17435390.2010.506957

URL : https://hal.archives-ouvertes.fr/hal-01099943

A. Tarantini, R. Lanceleur, and A. Mourot, Toxicity, genotoxicity and proinflammatory effects of amorphous nanosilica in the human intestinal Caco-2 cell line, Toxicology in Vitro, vol.29, issue.2, pp.398-407, 2015.
DOI : 10.1016/j.tiv.2014.10.023

URL : https://hal.archives-ouvertes.fr/hal-01102340

A. Thielmann, A. Gauch, and S. Nusser, Berlin Thielmann A (2015) Potential and Acceptance of Nanotechnology, Blockaden bei der Etablierung neuer Schlüsseltechnologien, Innovationsreport 1st Joint Symposium on Nanotechnology, vol.133, 2009.

C. Tsai, C. Huang, and S. Chen, Exposure assessment of nano-sized and respirable particles at different workplaces, Journal of Nanoparticle Research, vol.44, issue.1, 2011.
DOI : 10.1016/j.atmosenv.2010.04.042

M. Van-der-zande, R. Vandebriel, and E. Van-doren, Distribution, Elimination, and Toxicity of Silver Nanoparticles and Silver Ions in Rats after 28-Day Oral Exposure, ACS Nano, vol.6, issue.8, pp.7427-7442, 2012.
DOI : 10.1021/nn302649p

M. Vance, T. Kuiken, and E. Vejerano, Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory, Beilstein Journal of Nanotechnology, vol.6, pp.1769-1780, 2015.
DOI : 10.3762/bjnano.6.181

G. Vietti, D. Lison, and S. Van-den-brule, Mechanisms of lung fibrosis induced by carbon nanotubes: towards an Adverse Outcome Pathway (AOP), Particle and Fibre Toxicology, vol.73, issue.1, 2016.
DOI : 10.1021/nl300895y

S. Wagener, N. Dommershausen, and H. Jungnickel, Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat, Environmental Science & Technology, vol.50, issue.11, pp.5927-5934, 2016.
DOI : 10.1021/acs.est.5b06137

J. Wei, T. Vo, F. Inam, P. Westerhoff, L. Fabricius et al., Epoxy/graphene nanocomposites?processing and properties: a review Titanium dioxide nanoparticles in food and personal care products, RSC Adv Environ Sci Technol, vol.5, issue.464, pp.73510-735242242, 2012.

K. Wiench, S. Schulte, and S. Schneider, Zinc oxide?nanosize does not change the toxicological profile, N S Arch Pharmacol, vol.385, pp.104-104, 2012.

W. Wohlleben, M. Driessen, and S. Raesch, Influence of agglomeration and specific lung lining lipid/protein interaction on short-term inhalation toxicity, Nanotoxicology, vol.10, issue.7, pp.970-980, 2016.
DOI : 10.1117/1.JBO.18.6.061214

W. Wohlleben, J. Meyer, and J. Muller, Release from nanomaterials during their use phase: combined mechanical and chemical stresses applied to simple and multi-filler nanocomposites mimicking wear of nano-reinforced tires, Environmental Science: Nano, vol.71, issue.1, pp.1036-1051, 2016.
DOI : 10.1016/j.atmosenv.2005.10.029

W. Wohlleben, H. Waindok, B. Daumann, K. Werle, M. Drum et al., Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder, Particle and Fibre Toxicology, vol.44, issue.8, 2017.
DOI : 10.3109/10408444.2014.928266

B. Wong, D. Nash, and O. Moss, Generation of nanoparticle agglomerates and their dispersion in lung serum simulant or water. Inhal Part. https://doi.org/10, pp.1742-6596, 1088.

D. Ye, K. Dawson, and I. Lynch, A TEM protocol for quality assurance of in vitro cellular barrier models and its application to the assessment of nanoparticle transport mechanisms across barriers, The Analyst, vol.6, issue.1, pp.83-97, 2015.
DOI : 10.1021/nn300223w

J. Yun, S. Kim, and J. You, Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats, Journal of Applied Toxicology, vol.247, issue.212, pp.681-6933125, 2015.
DOI : 10.1016/j.tox.2008.02.011

X. Zhang, W. Li, and Z. Yang, Toxicology of nanosized titanium dioxide: an update, Archives of Toxicology, vol.22, issue.11, pp.2207-2217, 2015.
DOI : 10.1007/s11356-014-4002-5

F. Laboratoire-de, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 10B Rue Claude Bourgelat 35306