E. Giovannucci, An updated review of the epidemiological evidence that cigarette smoking increases risk of colorectal cancer, Cancer. Epidemiol. Biomarkers. Prev, vol.10, issue.1, pp.725-731, 2001.

D. Hoffmann, I. Hoffmann, K. Bayoumy, T. Sugimura, K. Wakabayashi et al., The less harmful cigarette, Preventive Medicine, vol.9, issue.2, pp.767-790, 1991.
DOI : 10.1016/0091-7435(80)90089-4

S. Manabe, N. Kurihara, O. Wada, S. Izumikawa, K. Asakuno et al., Detection of a carcinogen, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine, in airborne particles and diesel-exhaust particles, Environmental Pollution, vol.80, issue.3, pp.281-286, 1993.
DOI : 10.1016/0269-7491(93)90049-T

L. Zhang, D. L. Ashley, and C. H. Watson, Quantitative Analysis of Six Heterocyclic Aromatic Amines in Mainstream Cigarette Smoke Condensate Using Isotope Dilution Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, Nicotine & Tobacco Research, vol.13, issue.2, pp.120-126, 2011.
DOI : 10.1093/ntr/ntq219

D. H. Hoffmann and I. , Letters to the editor, tobacco smoke components. Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 1998.
DOI : 10.2478/cttr-2013-0668

URL : https://doi.org/10.2478/cttr-2013-0668

C. J. Smith, X. Qian, Q. Zha, and S. C. Moldoveanu, Analysis of ??- and ??-carbolines in mainstream smoke of reference cigarettes by gas chromatography???mass spectrometry, Journal of Chromatography A, vol.1046, issue.1-2, pp.211-216, 2004.
DOI : 10.1016/S0021-9673(04)01030-1

D. Yoshida and T. Matsumoto, Amino-??-carbolines as mutagenic agents in cigarette smoke condensate, Cancer Letters, vol.10, issue.2, pp.141-149, 1980.
DOI : 10.1016/0304-3835(80)90037-3

C. Patrianakos and D. Hoffmann, Chemical Studies on Tobacco Smoke LXIV. On the Analysis of Aromatic Amines in Cigarette Smoke*, Journal of Analytical Toxicology, vol.3, issue.4, pp.150-154, 1979.
DOI : 10.1093/jat/3.4.150

Q. Zha, N. X. Qian, and S. C. Moldoveanu, Analysis of Polycyclic Aromatic Hydrocarbons in the Particulate Phase of Cigarette Smoke Using a Gas Chromatographic-High-Resolution Mass Spectrometric Technique, Journal of Chromatographic Science, vol.40, issue.7, pp.403-408, 2002.
DOI : 10.1093/chromsci/40.7.403

S. S. Hecht, Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer, Carcinogenesis, vol.23, issue.6, pp.907-922, 2002.
DOI : 10.1093/carcin/23.6.907

URL : https://academic.oup.com/carcin/article-pdf/23/6/907/19254838/230907.pdf

R. J. Turesky, J. M. Yuan, R. Wang, S. Peterson, Y. et al., Tobacco smoking and urinary levels of 2-amino-9H-pyrido, Cancer. Epidemiol. Biomarkers. Prev, vol.2, issue.16, pp.1554-1560, 2007.
DOI : 10.1158/1055-9965.epi-07-0132

URL : http://cebp.aacrjournals.org/content/cebp/16/8/1554.full.pdf

Y. Fu, G. Zhao, S. Wang, J. Yu, F. Xie et al., Simultaneous determination of fifteen heterocyclic aromatic amines in the urine of smokers and nonsmokers using ultra-high performance liquid chromatography???tandem mass spectrometry, Journal of Chromatography A, vol.1333, issue.16, pp.45-53, 2014.
DOI : 10.1016/j.chroma.2014.01.057

. Amino-9h-pyrido, 3-b]indole and 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in Urine: Effects of Cigarette Smoking, Chem. Res. Toxicol, vol.2, issue.28, pp.2390-2399

H. Ohgaki, N. Matsukura, K. Morino, T. Kawachi, T. Sugimura et al., Carcinogenicity in mice of mutagenic compounds from glutamic acid and soybean globulin pyrolysates, Carcinogenesis, vol.5, issue.6, pp.815-819, 1984.
DOI : 10.1093/carcin/5.6.815

X. B. Zhang, J. S. Felton, J. D. Tucker, C. Urlando, and J. A. Heddle, ]pyridine and amino(??)carboline, Carcinogenesis, vol.17, issue.10, pp.2259-2265, 1996.
DOI : 10.1093/carcin/17.10.2259

H. Okonogi, T. Ushijima, X. B. Zhang, J. A. Heddle, T. Suzuki et al., Agreement of mutational characteristics of heterocyclic amines in lacI of the Big Blue mouse with those in tumor related genes in rodents, Carcinogenesis, vol.18, issue.4, pp.745-748, 1997.
DOI : 10.1093/carcin/18.4.745

W. Pfau, F. L. Martin, K. J. Cole, S. Venitt, D. H. Phillips et al., Heterocyclic aromatic amines induce DNA strand breaks and cell transformation, Carcinogenesis, vol.20, issue.4, pp.545-551, 1999.
DOI : 10.1093/carcin/20.4.545

URL : https://academic.oup.com/carcin/article-pdf/20/4/545/19259379/545.pdf

B. J. Majer, F. Kassie, Y. Sasaki, W. Pfau, H. Glatt et al., Investigation of the genotoxic effects of 2-amino-9H-pyrido[2,3-b]indole in different organs of rodents and in human derived cells, Journal of Chromatography B, vol.802, issue.1, pp.167-173, 2004.
DOI : 10.1016/j.jchromb.2003.10.042

G. Nauwelaers, M. Bellamri, V. Fessard, R. J. Turesky, and S. Langouet, ]indole and 4-Aminobiphenyl Are Formed at Environmental Exposure Levels and Persist in Human Hepatocytes, Chemical Research in Toxicology, vol.26, issue.9, pp.1367-1377, 2013.
DOI : 10.1021/tx4002226

URL : https://hal.archives-ouvertes.fr/inserm-00869907

G. Nauwelaers, E. E. Bessette, D. Gu, Y. Tang, J. Rageul et al., DNA Adduct Formation of 4-Aminobiphenyl and Heterocyclic Aromatic Amines in Human Hepatocytes, Chemical Research in Toxicology, vol.24, issue.6, pp.913-925, 2011.
DOI : 10.1021/tx200091y

URL : https://hal.archives-ouvertes.fr/hal-00609223

W. Pfau, C. Schulze, T. Shirai, R. Hasegawa, and U. Brockstedt, Identification of the major hepatic DNA adduct formed by the food mutagen 2-amino-9H-pyrido, Chem. Res. Toxicol, vol.2, issue.10, pp.1192-1197, 1997.

H. Frederiksen and H. Frandsen, Excretion of metabolites in urine and faeces from rats dosed with the heterocyclic amine, 2-amino-9H-pyrido[2,3-b]indole (A??C), Food and Chemical Toxicology, vol.42, issue.6, pp.879-885, 2004.
DOI : 10.1016/j.fct.2004.01.011

R. J. Turesky, J. Bendaly, I. Yasa, M. A. Doll, and D. W. Hein, ]indole, Chemical Research in Toxicology, vol.22, issue.4, pp.726-733, 2009.
DOI : 10.1021/tx800473w

URL : https://hal.archives-ouvertes.fr/hal-01485263

T. Niwa, Y. Yamazoe, and R. Kato, Metabolic activation of 2-amino-9H-pyrido[2,3-b]indole by rat-liver microsomes, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.95, issue.2-3, pp.159-170, 1982.
DOI : 10.1016/0027-5107(82)90254-8

H. Raza, R. S. King, R. B. Squires, F. P. Guengerich, D. W. Miller et al., Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2, Drug. Metab. Dispos, vol.24, pp.395-400, 1996.

R. S. King, C. H. Teitel, and F. F. Kadlubar, In vitro bioactivation of N-hydroxy-2- amino-alpha-carboline, Carcinogenesis, vol.21, pp.1347-1354, 2000.

R. J. Turesky, L. Marchand, and L. , Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines, Chemical Research in Toxicology, vol.24, issue.8, pp.1169-1214, 2011.
DOI : 10.1021/tx200135s

S. A. Nowell, J. S. Massengill, S. Williams, A. Radominska-pandya, T. R. Tephly et al., Glucuronidation of 2-hydroxyamino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human microsomal UDP-glucuronosyltransferases: identification of specific UGT1A family isoforms involved, Carcinogenesis, vol.20, issue.6, pp.1107-1114, 1999.
DOI : 10.1093/carcin/20.6.1107

M. A. Malfatti, F. , and J. S. , -Hydroxy-PhIP in Vitro, Chemical Research in Toxicology, vol.17, issue.8, pp.1137-1144, 2004.
DOI : 10.1021/tx049898m

Y. Tang, D. M. Lemaster, G. Nauwelaers, D. Gu, S. Langouet et al., ]indole, Journal of Biological Chemistry, vol.1, issue.507, pp.14960-14972, 2012.
DOI : 10.1016/0006-2952(77)90301-X

URL : https://hal.archives-ouvertes.fr/hal-00696860

Y. C. Lee, C. Cohet, Y. C. Yang, L. Stayner, M. Hashibe et al., Meta-analysis of epidemiologic studies on cigarette smoking and liver cancer, International Journal of Epidemiology, vol.38, issue.6, pp.1497-1511, 2009.
DOI : 10.1093/ije/dyp280

P. Vineis, M. Alavanja, P. Buffler, E. Fontham, S. Franceschi et al., Tobacco and Cancer: Recent Epidemiological Evidence, JNCI Journal of the National Cancer Institute, vol.96, issue.2, pp.99-106, 2004.
DOI : 10.1093/jnci/djh014

URL : https://academic.oup.com/jnci/article-pdf/96/2/99/10892521/zv800204000099.pdf

H. Frederiksen, Two food-borne heterocyclic amines: Metabolism and DNA adduct formation of amino-??-carbolines, Molecular Nutrition & Food Research, vol.40, issue.3, pp.263-273, 2005.
DOI : 10.1016/0027-5107(85)90098-3

URL : http://orbit.dtu.dk/en/publications/two-foodborne-heterocyclic-amines-metabolism-and-dna-adduct-formation-of-aminoalphacarbolines(affb2d79-8694-473f-9513-d578ba757953).html

H. Frederiksen and H. Frandsen, In vitro Metabolism of Two Heterocyclic Amines, 2-Amino-9H-pyrido[2,3-b]indole (AalphaC) and 2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAalphaC) in Human and Rat Hepatic Microsomes, Pharmacology and Toxicology, vol.10, issue.3, pp.127-134, 2002.
DOI : 10.1016/0027-5107(85)90098-3

R. S. King, C. H. Teitel, J. G. Shaddock, D. A. Casciano, and F. F. Kadlubar, Detoxification of carcinogenic aromatic and heterocyclic amines by enzymatic reduction of the N-hydroxy derivative, Cancer Letters, vol.143, issue.2, pp.167-171, 1999.
DOI : 10.1016/S0304-3835(99)00119-6

Z. X. Yuan, G. Jha, M. A. Mcgregor, and R. S. King, Metabolites of the Carcinogen 2-Amino-??-carboline Formed in Male Sprague???Dawley Rats in Vivo and in Rat Hepatocyte and Human HepG2 Cell Incubates, Chemical Research in Toxicology, vol.20, issue.3, pp.497-503, 2007.
DOI : 10.1021/tx600303d

R. J. Turesky, D. Konorev, X. Fan, Y. Tang, L. Yao et al., ]indole Metabolism and DNA Adduct Formation in Liver and Extrahepatic Tissues of Mice, Chemical Research in Toxicology, vol.28, issue.12, pp.2400-2410, 2015.
DOI : 10.1021/acs.chemrestox.5b00405

A. Guillouzo, F. Morel, S. Langouet, K. Maheo, and M. Rissel, Use of hepatocyte cultures for the study of hepatotoxic compounds, Journal of Hepatology, vol.26, issue.2, pp.73-80, 1997.
DOI : 10.1016/S0168-8278(97)80499-0

K. L. Kunze and W. F. Trager, Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline, Chemical Research in Toxicology, vol.6, issue.5, pp.649-656, 1993.
DOI : 10.1021/tx00035a009

M. D. Burke, M. , and R. T. , Differential effects of phenobarbitone and 3- methylcholanthrene induction on the hepatic microsomal metabolism and cytochrome P-450- binding of phenoxazone and a homologous series of its n-alkyl ethers (alkoxyresorufins), 1983.

H. P. Eugster, M. Probst, F. E. Wurgler, and C. Sengstag, Caffeine, estradiol, and progesterone interact with human CYP1A1 and CYP1A2. Evidence from cDNA-directed expression in Saccharomyces cerevisiae, Drug. Metab. Dispos, vol.21, pp.43-49, 1993.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

R. C. Gupta, 32P-postlabelling analysis of bulky aromatic adducts, IARC. Sci. Publ, pp.11-23, 1993.

A. K. Goodenough, H. A. Schut, and R. J. Turesky, ]pyridine by 2-D Linear Quadrupole Ion Trap Mass Spectrometry, Chemical Research in Toxicology, vol.20, issue.2, pp.263-276, 2007.
DOI : 10.1021/tx0601713

Y. T. Chiu, J. Liu, K. Tang, Y. C. Wong, K. K. Khanna et al., Inactivation of ATM/ATR DNA damage checkpoint promotes androgen induced chromosomal instability in prostate epithelial cells Structure elucidation of phase II metabolites by tandem mass spectrometry: an overview, PLoS. One. J. Chromatogr. A, vol.7, issue.1067, pp.55-72, 2005.

M. A. Butler, M. Iwasaki, F. P. Guengerich, and F. F. Kadlubar, Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines., Proc. Natl. Acad. Sci, pp.7696-7700, 1989.
DOI : 10.1073/pnas.86.20.7696

S. Langouet, D. H. Welti, N. Kerriguy, L. B. Fay, T. Huynh-ba et al., ]quinoxaline-8-carboxylic Acid Is a Major Detoxication Pathway Catalyzed by Cytochrome P450 1A2, Chemical Research in Toxicology, vol.14, issue.2, pp.211-221, 2001.
DOI : 10.1021/tx000176e

S. Langouet, A. Paehler, D. H. Welti, N. Kerriguy, A. Guillouzo et al., Differential metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rat and human hepatocytes, Carcinogenesis, vol.23, issue.1, pp.115-122, 2002.
DOI : 10.1093/carcin/23.1.115

E. Kriek, Fifty years of research onN-acetyl-2-aminofluorene, one of the most versatile compounds in experimental cancer research, Journal of Cancer Research and Clinical Oncology, vol.83, issue.7, pp.481-489, 1992.
DOI : 10.1007/978-3-642-74775-5_13

E. Kriek, Persistent binding of a new reaction product of the carcinogen N-hydroxy-N- 2-acetylaminofluorene with guanine in rat liver DNA in vivo, Cancer. Res, vol.32, pp.2042-2048, 1972.

R. J. Turesky, F. P. Guengerich, A. Guillouzo, and S. Langouet, Metabolism of heterocyclic aromatic amines by human hepatocytes and cytochrome P4501A2, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.506, issue.507, pp.506-507, 2002.
DOI : 10.1016/S0027-5107(02)00165-3

H. Wallin, A. Mikalsen, F. P. Guengerich, M. Ingelman-sundberg, K. E. Solberg et al., ]pyridine by different cytochrome P450 enzymes, Carcinogenesis, vol.11, issue.3, pp.489-492, 1990.
DOI : 10.1093/carcin/11.3.489

C. Aninat, A. Piton, D. Glaise, L. Charpentier, T. Langouet et al., EXPRESSION OF CYTOCHROMES P450, CONJUGATING ENZYMES AND NUCLEAR RECEPTORS IN HUMAN HEPATOMA HepaRG CELLS, Drug Metabolism and Disposition, vol.34, issue.1, pp.75-83, 2006.
DOI : 10.1124/dmd.105.006759

URL : https://hal.archives-ouvertes.fr/hal-00702085

T. Cai, L. Yao, and R. J. Turesky, Bioactivation of Heterocyclic Aromatic Amines by UDP Glucuronosyltransferases, Chemical Research in Toxicology, vol.29, issue.5, pp.879-891, 2016.
DOI : 10.1021/acs.chemrestox.6b00046

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4868641/pdf

K. V. Pathak, M. Bellamri, Y. Wang, S. Langouet, and R. J. Turesky, -Amino-9H- pyrido[2,3-b]indole (AalphaC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke, J. Biol. Chem, vol.2, issue.290, pp.16304-16318, 2015.