M. J. Bonten, R. Willems, and R. A. Weinstein, Vancomycin-resistant enterococci: why are they here, and where do they come from?, The Lancet Infectious Diseases, vol.1, issue.5, pp.314-325, 2001.
DOI : 10.1016/S1473-3099(01)00145-1

D. A. Boyd, B. M. Willey, D. Fawcett, N. Gillani, and M. R. Mulvey, Molecular Characterization of Enterococcus faecalis N06-0364 with Low-Level Vancomycin Resistance Harboring a Novel D-Ala-D-Ser Gene Cluster, vanL, Antimicrobial Agents and Chemotherapy, vol.52, issue.7, pp.2667-2672, 1128.
DOI : 10.1128/AAC.01516-07

D. B. Caldwell, Y. Wang, L. , and J. , Development, Stability, and Molecular Mechanisms of Macrolide Resistance in Campylobacter jejuni, Antimicrobial Agents and Chemotherapy, vol.52, issue.11, pp.3947-3954, 2008.
DOI : 10.1128/AAC.00450-08

M. Casewell, C. Friis, E. Marco, P. Mcmullin, I. Phillips et al., The European ban on growth-promoting antibiotics and emerging consequences for human and animal health, Journal of Antimicrobial Chemotherapy, vol.52, issue.2, pp.159-161, 2000.
DOI : 10.1093/jac/dkg313

C. Chen, J. Sun, Y. Guo, D. Lin, Q. Guo et al., in Vancomycin-Resistant Enterococcus faecium Isolates from Shanghai, China, Antimicrobial Agents and Chemotherapy, vol.59, issue.12, pp.7795-7798, 1128.
DOI : 10.1128/AAC.01732-15

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649207

I. Chopra and M. Roberts, Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance, Microbiology and Molecular Biology Reviews, vol.65, issue.2, 2001.
DOI : 10.1128/MMBR.65.2.232-260.2001

P. Collignon and F. M. Aarestrup, Extended-Spectrum ??-Lactamases, Food, and Cephalosporin Use in Food Animals, Clinical Infectious Diseases, vol.44, issue.10, pp.1391-1392, 2007.
DOI : 10.1086/516612

L. A. Cox and . Jr, Potential human health benefits of antibiotics used in food animals: a case study of virginiamycin, Environment International, vol.31, issue.4, 2005.
DOI : 10.1016/j.envint.2004.10.012

L. A. Cox, . Jr, D. A. Popken, N. O. Hübner, A. Kossow et al., Quantifying Human Health Risks from Virginiamycin Used in Chickens, Risk Analysis, vol.182, issue.9259, pp.271-288, 2004.
DOI : 10.1111/j.0272-4332.2004.00428.x

J. J. Dibner and J. D. Richards, Antibiotic growth promoters in agriculture: history and mode of action, Poultry Science, vol.84, issue.4, 2005.
DOI : 10.1093/ps/84.4.634

M. Dolejska, P. Frolkova, M. Florek, I. Jamborova, M. Purgertova et al., CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents, Bacteria from Humans and Food-Producing Animals. Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report, pp.2784-2790, 2011.
DOI : 10.1093/jac/dkr363

URL : http://jac.oxfordjournals.org/cgi/content/short/66/12/2784

H. D. Emborg, H. Vigre, V. F. Jensen, A. R. Vieira, D. L. Baggesen et al., Typhimurium Phage Types from Danish Pigs, Microbial Drug Resistance, vol.13, issue.4, pp.289-294746, 2007.
DOI : 10.1089/mdr.2007.746

C. Ewers, A. Bethe, T. Semmler, S. Guenther, and L. H. Wieler, Extended-spectrum ??-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective, Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Scientific assessment Geneva. FAO/OIE/WHO, pp.646-655, 2003.
DOI : 10.1111/j.1469-0691.2012.03850.x

F. Oie and . Who, Second Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Management Options, 2004.

F. Oie and . Who, Report of a Joint FAO, Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance Seoul: FAO/OIE/WHO, 2006.

M. B. Farnell, A. M. Donoghue, K. Cole, I. Reyes-herrera, P. J. Blore et al., Campylobacter susceptibility to ciprofloxacin and corresponding fluoroquinolone concentrations within the gastrointestinal tracts of chickens Final Decision of the Commissioner Docket No. 2000N21571 with Drawal of Approval of the New Animal Drug Application for Enrofloxacin in Poultry Limiting Antimicrobial Resistance, J. Appl. Microbiol, vol.99, 2002.

F. Freitas, A. R. Coque, T. M. Novais, C. Hammerum, A. M. Lester et al., Human and Swine Hosts Share Vancomycin-Resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 Clonal Clusters Harboring Tn1546 on Indistinguishable Plasmids, Journal of Clinical Microbiology, vol.49, issue.3, pp.925-931, 1128.
DOI : 10.1128/JCM.01750-10

K. Gambarotto, M. C. Ploy, P. Turlure, C. Grélaud, C. Martin et al., Prevalence of vancomycin-resistant enterococci in fecal samples from hospitalized patients and nonhospitalized controls in a cattle-rearing area of France, J. Clin. Microbiol, vol.38, pp.620-624, 2000.

L. Garcia-migura, E. Liebana, L. B. Jensen, S. Barnes, and E. Pleydell, (VREF) on an intensive broiler farm in the United Kingdom, FEMS Microbiology Letters, vol.275, issue.2, pp.319-325, 2007.
DOI : 10.1111/j.1574-6968.2007.00911.x

A. Gibreel, V. N. Kos, M. Keelan, C. A. Trieber, S. Levesque et al., Macrolide Resistance in Campylobacter jejuni and Campylobacter coli: Molecular Mechanism and Stability of the Resistance Phenotype, Antimicrobial Agents and Chemotherapy, vol.49, issue.7, pp.2753-2759, 2005.
DOI : 10.1128/AAC.49.7.2753-2759.2005

M. Gratacós-cubarsí, J. A. García-regueiro, and M. Castellari, Assessment of enrofloxacin and ciprofloxacin accumulation in pig and calf hair by HPLC and fluorimetric detection, Analytical and Bioanalytical Chemistry, vol.23, issue.10, pp.10-1007, 1991.
DOI : 10.1007/s00216-006-1000-6

D. J. Griggs, M. M. Johnson, J. A. Frost, T. Humphrey, F. Jørgensen et al., Incidence and Mechanism of Ciprofloxacin Resistance in Campylobacter spp. Isolated from Commercial Poultry Flocks in the United Kingdom before, during, and after Fluoroquinolone Treatment, Antimicrobial Agents and Chemotherapy, vol.49, issue.2, pp.699-707, 2005.
DOI : 10.1128/AAC.49.2.699-707.2005

S. Guenther, C. Ewers, and L. H. Wieler, Extended-spectrum betalactamases producing E. coli in wildlife, yet another form of environmental pollution? Front, 2011.

S. Guenther, M. Grobbel, J. Beutlich, B. Guerra, R. G. Ulrich et al., Detection of pandemic B2-O25-ST131 Escherichia coli harbouring the CTX-M-9 extended-spectrum ??-lactamase type in a feral urban brown rat (Rattus norvegicus), Journal of Antimicrobial Chemotherapy, vol.65, issue.3, pp.582-584, 2010.
DOI : 10.1093/jac/dkp496

S. Guenther, M. Grobbel, A. Lübke-becker, A. Goedecke, N. D. Friedrich et al., Antimicrobial resistance profiles of Escherichia coli from common European wild bird species, Veterinary Microbiology, vol.144, issue.1-2, pp.219-225, 2009.
DOI : 10.1016/j.vetmic.2009.12.016

A. M. Hammerum, O. E. Heuer, C. H. Lester, Y. Agersø, A. M. Seyfarth et al., Comment on: withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health, International Journal of Antimicrobial Agents, vol.30, issue.5, pp.466-468, 2007.
DOI : 10.1016/j.ijantimicag.2007.07.012

A. M. Hammerum, L. B. Jensen, and F. M. Aarestrup, Detection of the satA gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals, FEMS Microbiol. Lett, vol.168, 1998.

A. M. Hammerum, C. H. Lester, and O. E. Heuer, Antimicrobial-resistant enterococci in animals and meat: a human health hazard? Foodborne Pathog, Dis, vol.7, pp.1137-1146, 2010.

J. Han, O. Sahin, Y. W. Barton, and Q. Zhang, Key Role of Mfd in the Development of Fluoroquinolone Resistance in Campylobacter jejuni, PLoS Pathogens, vol.37, issue.6, 2008.
DOI : 10.1371/journal.ppat.1000083.t002

J. Han, Y. Wang, O. Sahin, Z. Shen, B. Guo et al., A Fluoroquinolone Resistance Associated Mutation in gyrA Affects DNA Supercoiling in Campylobacter jejuni, Frontiers in Cellular and Infection Microbiology, vol.2, 2012.
DOI : 10.3389/fcimb.2012.00021

H. Hao, Z. Yuan, Z. Shen, J. Han, O. Sahin et al., Mutational and Transcriptomic Changes Involved in the Development of Macrolide Resistance in Campylobacter jejuni, Antimicrobial Agents and Chemotherapy, vol.57, issue.3, pp.1369-1378, 1128.
DOI : 10.1128/AAC.01927-12

J. Haroche, J. Allignet, S. Aubert, A. E. Van-den-bogaard, E. Solh et al., satG, Conferring Resistance to Streptogramin A, Is Widely Distributed in Enterococcus faecium Strains but Not in Staphylococci, Antimicrobial Agents and Chemotherapy, vol.44, issue.1, 2000.
DOI : 10.1128/AAC.44.1.190-191.2000

H. Hasman, D. Mevius, K. Veldman, I. Olesen, and F. M. Aarestrup, ??-Lactamases among extended-spectrum ??-lactamase (ESBL)-resistant Salmonella from poultry, poultry products and human patients in The Netherlands, Journal of Antimicrobial Chemotherapy, vol.56, issue.1, pp.115-121, 2005.
DOI : 10.1093/jac/dki190

E. Hershberger, S. F. Oprea, S. M. Donabedian, M. Perri, P. Bozigar et al., Epidemiology of antimicrobial resistance in enterococci of animal origin, Journal of Antimicrobial Chemotherapy, vol.55, issue.1, pp.127-130, 2005.
DOI : 10.1093/jac/dkh508

H. S. Hurd, S. Doores, D. Hayes, A. Mathew, J. Maurer et al., Public Health Consequences of Macrolide Use in Food Animals: A Deterministic Risk Assessment, Journal of Food Protection, vol.67, issue.5, pp.980-992, 2004.
DOI : 10.4315/0362-028X-67.5.980

L. B. Jensen, Differences in the occurrence of two base pair variants of Tn1546 from vancomycin-resistant enterococci from humans, pigs, and poultry, Antimicrob. Agents Chemother, vol.42, pp.2463-2464, 1998.

A. L. Kieke, M. A. Borchardt, B. A. Kieke, S. K. Spencer, M. F. Vandermause et al., from Humans, The Journal of Infectious Diseases, vol.194, issue.9, pp.1200-1208, 2006.
DOI : 10.1086/508189

J. S. Kim, D. K. Carver, and S. Kathariou, Natural transformationmediated transfer of erythromycin resistance in Campylobacter coli strains from turkeys and swine, Appl. Environ. Microbiol, vol.72, 2006.

I. Klare, H. Heier, H. Claus, R. Reissbrodt, and W. Witte, vanAmediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry, FEMS Microbiol. Lett, vol.125, 1995.
DOI : 10.1111/j.1574-6968.1995.tb07353.x

T. Kobayashi, L. Nonaka, F. Maruyama, S. A. Suzuki, and A. Dikici, Molecular evidence for the ancient origin of the ribosomal protection protein that mediates tetracycline resistance in bacteria Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends, J. Mol. Evol. Crit. Rev. Microbiol, vol.65, issue.39, pp.228-235, 2007.

C. H. Lester, N. Frimodt-møller, T. L. Sørensen, D. L. Monnet, and A. M. Hammerum, In Vivo Transfer of the vanA Resistance Gene from an Enterococcus faecium Isolate of Animal Origin to an E. faecium Isolate of Human Origin in the Intestines of Human Volunteers, Antimicrobial Agents and Chemotherapy, vol.50, issue.2, pp.596-599, 2006.
DOI : 10.1128/AAC.50.2.596-599.2006

C. H. Lester and A. M. Hammerum, Transfer of vanA from an Enterococcus faecium isolate of chicken origin to a CC17 E. faecium isolate in the intestine of cephalosporin-treated mice, Journal of Antimicrobial Chemotherapy, vol.65, issue.7, pp.1534-1536, 2010.
DOI : 10.1093/jac/dkq170

J. H. Liang and X. Han, Structure-Activity Relationships and Mechanism of Action of Macrolides Derived from Erythromycin as Antibacterial Agents, Current Topics in Medicinal Chemistry, vol.13, issue.24, pp.3131-3164, 2013.
DOI : 10.2174/15680266113136660223

E. Liebana, A. Carattoli, T. M. Coque, H. Hasman, A. P. Magiorakos et al., Public Health Risks of Enterobacterial Isolates Producing Extended-Spectrum ??-Lactamases or AmpC ??-Lactamases in Food and Food-Producing Animals: An EU Perspective of Epidemiology, Analytical Methods, Risk Factors, and Control Options, Clinical Infectious Diseases, vol.56, issue.7, pp.1030-1037, 2013.
DOI : 10.1093/cid/cis1043

J. Lin, M. Yan, O. Sahin, S. Pereira, Y. J. Chang et al., Effect of Macrolide Usage on Emergence of Erythromycin-Resistant Campylobacter Isolates in Chickens, Antimicrobial Agents and Chemotherapy, vol.51, issue.5, pp.1678-1686, 1128.
DOI : 10.1128/AAC.01411-06

M. Linkevicius, L. Sandegren, and D. I. Andersson, Potential of Tetracycline Resistance Proteins To Evolve Tigecycline Resistance, Antimicrobial Agents and Chemotherapy, vol.60, issue.2, pp.789-796, 2015.
DOI : 10.1128/AAC.02465-15

T. Luangtongkum, B. Jeon, J. Han, P. Plummer, C. M. Logue et al., : emergence, transmission and persistence, Future Microbiology, vol.4, issue.2, pp.189-200, 2009.
DOI : 10.2217/17460913.4.2.189

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2691575

T. Luangtongkum, Z. Shen, V. W. Seng, O. Sahin, B. Jeon et al., Impaired Fitness and Transmission of Macrolide-Resistant Campylobacter jejuni in Its Natural Host, Antimicrobial Agents and Chemotherapy, vol.56, issue.3, pp.1300-1308, 1128.
DOI : 10.1128/AAC.05516-11

N. Luo, S. Pereira, O. Sahin, J. Lin, S. Huang et al., Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure, Proceedings of the National Academy of Sciences, vol.102, issue.3, pp.541-546, 2005.
DOI : 10.1073/pnas.0408966102

N. Luo, O. Sahin, J. Lin, L. O. Michel, and Q. Zhang, In Vivo Selection of Campylobacter Isolates with High Levels of Fluoroquinolone Resistance Associated with gyrA Mutations and the Function of the CmeABC Efflux Pump, Antimicrobial Agents and Chemotherapy, vol.47, issue.1, pp.390-394, 2003.
DOI : 10.1128/AAC.47.1.390-394.2003

B. M. Marshall and S. B. Levy, Food Animals and Antimicrobials: Impacts on Human Health, Clinical Microbiology Reviews, vol.24, issue.4, pp.718-733, 2011.
DOI : 10.1128/CMR.00002-11

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3194830

P. F. Mcdermott, S. M. Bodeis, L. L. English, D. G. White, R. D. Walker et al., Evolves Rapidly in Chickens Treated with Fluoroquinolones, The Journal of Infectious Diseases, vol.185, issue.6, pp.837-840, 1086.
DOI : 10.1086/339195

L. C. Mcdonald, S. Rossiter, C. Mackinson, Y. Y. Wang, S. Johnson et al., on Chicken and in Human Stool Specimens, New England Journal of Medicine, vol.345, issue.16, pp.1155-1160, 1056.
DOI : 10.1056/NEJMoa010805

T. M. Powers, J. H. Angulo, and F. J. , Antibiotic Retail Meat Report-National Antimicrobial Resistance Monitoring System Available online at: http://www. fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/ NationalAntimicrobialResistanceMonitoringSystem/default.htm NARMS (2012) Retail Meat Report-National Antimicrobial Resistance Monitoring System Available online at: http://www. fda.gov/AnimalVeterinary Fluoroquinolone-resistant Campylobacter species and the withdrawal of fluoroquinolones from use in poultry: a public health success story, Use in Livestock Production: Ensuring Meat Safety, pp.977-980, 2007.

T. A. Niewold, The Nonantibiotic Anti-Inflammatory Effect of Antimicrobial Growth Promoters, the Real Mode of Action? A Hypothesis, Poultry Science, vol.86, issue.4, pp.605-609, 2007.
DOI : 10.1093/ps/86.4.605

O. Nilsson, Vancomycin resistant enterococci in farm animals ??? occurrence and importance, Infection Ecology & Epidemiology, vol.42, issue.4, 2012.
DOI : 10.3402/iee.v2i0.16959

URL : http://doi.org/10.3402/iee.v2i0.16959

O. Nilsson, C. Greko, J. Top, A. Franklin, and B. Bengtsson, Spread without known selective pressure of a vancomycin-resistant clone of Enterococcus faecium among broilers, Journal of Antimicrobial Chemotherapy, vol.63, issue.5, pp.868-872, 2009.
DOI : 10.1093/jac/dkp045

T. Nomura, K. Tanimoto, K. Shibayama, Y. Arakawa, S. Fujimoto et al., Identification of VanN-Type Vancomycin Resistance in an Enterococcus faecium Isolate from Chicken Meat in Japan, Antimicrobial Agents and Chemotherapy, vol.56, issue.12, pp.6389-6392, 1128.
DOI : 10.1128/AAC.00747-12

I. Phillips, Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health, International Journal of Antimicrobial Agents, vol.30, issue.2, 2007.
DOI : 10.1016/j.ijantimicag.2007.02.018

I. Phillips, M. Casewell, T. Cox, B. De-groot, C. Friis et al., Antibiotic use in animals, Journal of Antimicrobial Chemotherapy, vol.53, issue.5, 2004.
DOI : 10.1093/jac/dkh149

I. Phillips, M. Casewell, T. Cox, B. De-groot, C. Friis et al., Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data, Journal of Antimicrobial Chemotherapy, vol.53, issue.1, pp.28-52, 2004.
DOI : 10.1093/jac/dkg483

B. Robredo, K. V. Singh, C. Torres, M. , and B. E. , hirae Isolated from Humans and Animals in Spain, Microbial Drug Resistance, vol.6, issue.4, pp.305-311, 2000.
DOI : 10.1089/mdr.2000.6.305

J. E. Rubin and J. D. Pitout, Extended-spectrum beta-lactamase, carbapenemase and AmpC producing Enterobacteriaceae in companion animals, Vet. Microbiol, vol.170, 2014.
DOI : 10.1016/j.vetmic.2014.01.017

J. G. Salisbury, T. J. Nicholls, A. M. Lammerding, J. Turnidge, and M. J. Nunn, A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals, International Journal of Antimicrobial Agents, vol.20, issue.3, pp.153-164, 2002.
DOI : 10.1016/S0924-8579(02)00169-3

D. L. Smith, J. A. Johnson, A. D. Harris, J. P. Furuno, E. N. Perencevich et al., Assessing risks for a pre-emergent pathogen: virginiamycin use and the emergence of streptogramin resistance in Enterococcus faecium, The Lancet Infectious Diseases, vol.3, issue.4, pp.241-249, 2003.
DOI : 10.1016/S1473-3099(03)00581-4

T. L. Sørensen, M. Blom, D. L. Monnet, N. Frimodt-møller, R. L. Poulsen et al., from Chicken and Pork, New England Journal of Medicine, vol.345, issue.16, pp.1161-1166, 1021.
DOI : 10.1056/NEJMoa010692

T. Tenson, M. Lovmar, and M. Ehrenberg, The Mechanism of Action of Macrolides, Lincosamides and Streptogramin B Reveals the Nascent Peptide Exit Path in the Ribosome, Journal of Molecular Biology, vol.330, issue.5, pp.1005-1014, 2003.
DOI : 10.1016/S0022-2836(03)00662-4

J. Top, L. M. Schouls, M. J. Bonten, and R. J. Willems, Multiple-Locus Variable-Number Tandem Repeat Analysis, a Novel Typing Scheme To Study the Genetic Relatedness and Epidemiology of Enterococcus faecium Isolates, Journal of Clinical Microbiology, vol.42, issue.10, pp.4503-4511, 2004.
DOI : 10.1128/JCM.42.10.4503-4511.2004

J. Turnidge, Antibiotic use in animals--prejudices, perceptions and realities, Journal of Antimicrobial Chemotherapy, vol.53, issue.1, pp.26-27, 2004.
DOI : 10.1093/jac/dkg493

URL : http://jac.oxfordjournals.org/cgi/content/short/53/1/26

L. Valentin, H. Sharp, K. Hille, U. Seibt, J. Fischer et al., Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs, International Journal of Medical Microbiology, vol.304, issue.7, pp.805-816, 2014.
DOI : 10.1016/j.ijmm.2014.07.015

M. Van-boven, K. T. Veldman, M. C. De-jong, and D. J. Mevius, Rapid selection of quinolone resistance in Campylobacter jejuni but not in Escherichia coli in individually housed broilers, Journal of Antimicrobial Chemotherapy, vol.52, issue.4, pp.719-723, 2003.
DOI : 10.1093/jac/dkg402

G. Werner, T. M. Coque, A. M. Hammerum, R. Hope, W. Hryniewicz et al., Emergence and spread of vancomycin resistance among enterococci in Europe, Euro Surveill, vol.13, 2008.

G. Werner, I. Klare, and W. Witte, Molecular analysis of streptogramin resistance in enterococci, International Journal of Medical Microbiology, vol.292, issue.2, pp.81-94, 2002.
DOI : 10.1078/1438-4221-00194

R. J. Willems, J. Top, M. Van-santen, D. A. Robinson, T. M. Coque et al., from Distinct Nosocomial Genetic Complex, Emerging Infectious Diseases, vol.11, issue.6, pp.821-828, 1106.
DOI : 10.3201/1106.041204

URL : http://doi.org/10.3201/1106.041204

X. Xu, D. Lin, G. Yan, X. Ye, S. Wu et al., vanM, a New Glycopeptide Resistance Gene Cluster Found in Enterococcus faecium, Antimicrobial Agents and Chemotherapy, vol.54, issue.11, pp.4643-4647, 1128.
DOI : 10.1128/AAC.01710-09

M. Yan, O. Sahin, J. Lin, and Q. Zhang, Role of the CmeABC efflux pump in the emergence of fluoroquinolone-resistant Campylobacter under selection pressure, Journal of Antimicrobial Chemotherapy, vol.58, issue.6, pp.1154-1159, 2006.
DOI : 10.1093/jac/dkl412